TensorRT英伟达官方示例解析(二)

系列文章目录

TensorRT英伟达官方示例解析(一)
TensorRT英伟达官方示例解析(二)


文章目录

  • 系列文章目录
  • 前言
  • 一、03-BuildEngineByTensorRTAPI
    • 1.1 建立 Logger(日志记录器)
    • 1.2 Builder 引擎构建器
    • 1.3 Network 网络具体构造
    • 1.4 Profile 指定输入张量大小范围
    • 1.5 BuilderConfig 网络属性选项
    • 1.6 Explicit Batch 模式 v.s. Implicit Batch 模式
    • 1.7 Dynamic Shape 模式
  • 二、calibrator.py
  • 三、C++
  • 四、构建引擎基础步骤
  • 总结


前言

继TensorRT英伟达官方示例解析(一)https://blog.csdn.net/m0_70420861/article/details/135761090?spm=1001.2014.3001.5501


一、03-BuildEngineByTensorRTAPI

使用 API 完整搭建一个 MNIST 手写识别模型的示例

基本流程:

➢ TensorFlow / pyTorch 中创建并训练一个网络

➢ 提取网络权重,保存为 para.npz

➢ TensorRT 中逐层重建该网络并加载 para.npz 中的权重

➢ 生成推理引擎

➢ 用引擎做实际推理

在这里插入图片描述

以/MNISTExample-pyTorch项目为例

main.py

#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#import os
from datetime import datetime as dt
from glob import globimport calibrator
import cv2
import numpy as np
import tensorrt as trt
import torch as t
import torch.nn.functional as F
from cuda import cudart
from torch.autograd import Variablenp.random.seed(31193)
t.manual_seed(97)
t.cuda.manual_seed_all(97)
t.backends.cudnn.deterministic = True
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paraFile = "./para.npz"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"os.system("rm -rf ./*.npz ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()# Create network and train model in pyTorch ------------------------------------
class Net(t.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = t.nn.Conv2d(1, 32, (5, 5), padding=(2, 2), bias=True)self.conv2 = t.nn.Conv2d(32, 64, (5, 5), padding=(2, 2), bias=True)self.fc1 = t.nn.Linear(64 * 7 * 7, 1024, bias=True)self.fc2 = t.nn.Linear(1024, 10, bias=True)def forward(self, x):x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))x = x.reshape(-1, 64 * 7 * 7)x = F.relu(self.fc1(x))y = self.fc2(x)z = F.softmax(y, dim=1)z = t.argmax(z, dim=1)return y, zclass MyData(t.utils.data.Dataset):def __init__(self, isTrain=True):if isTrain:self.data = trainFileListelse:self.data = testFileListdef __getitem__(self, index):imageName = self.data[index]data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)label = np.zeros(10, dtype=np.float32)index = int(imageName[-7])label[index] = 1return t.from_numpy(data.reshape(1, nHeight, nWidth).astype(np.float32)), t.from_numpy(label)def __len__(self):return len(self.data)model = Net().cuda()
ceLoss = t.nn.CrossEntropyLoss()
opt = t.optim.Adam(model.parameters(), lr=0.001)
trainDataset = MyData(True)
testDataset = MyData(False)
trainLoader = t.utils.data.DataLoader(dataset=trainDataset, batch_size=nTrainBatchSize, shuffle=True)
testLoader = t.utils.data.DataLoader(dataset=testDataset, batch_size=nTrainBatchSize, shuffle=True)for epoch in range(10):for xTrain, yTrain in trainLoader:xTrain = Variable(xTrain).cuda()yTrain = Variable(yTrain).cuda()opt.zero_grad()y_, z = model(xTrain)loss = ceLoss(y_, yTrain)loss.backward()opt.step()with t.no_grad():acc = 0n = 0for xTest, yTest in testLoader:xTest = Variable(xTest).cuda()yTest = Variable(yTest).cuda()y_, z = model(xTest)acc += t.sum(z == t.matmul(yTest, t.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).to("cuda:0"))).cpu().numpy()n += xTest.shape[0]print("%s, epoch %2d, loss = %f, test acc = %f" % (dt.now(), epoch + 1, loss.data, acc / n))para = {}  # save weight as file
for name, parameter in model.named_parameters():#print(name, parameter.detach().cpu().numpy().shape)para[name] = parameter.detach().cpu().numpy()
np.savez(paraFile, **para)del para
print("Succeeded building model in pyTorch!")# Rebuild network, load weights and do inference in TensorRT -------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:config.set_flag(trt.BuilderFlag.INT8)config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)para = np.load(paraFile)w = np.ascontiguousarray(para["conv1.weight"])
b = np.ascontiguousarray(para["conv1.bias"])
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]w = np.ascontiguousarray(para["conv2.weight"])
b = np.ascontiguousarray(para["conv2.bias"])
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]_6 = network.add_shuffle(_5.get_output(0))
_6.reshape_dims = (-1, 64 * 7 * 7)w = np.ascontiguousarray(para["fc1.weight"].transpose())
b = np.ascontiguousarray(para["fc1.bias"].reshape(1, -1))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)w = np.ascontiguousarray(para["fc2.weight"].transpose())
b = np.ascontiguousarray(para["fc2.bias"].reshape(1, -1))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)network.mark_output(_17.get_output(1))engineString = builder.build_serialized_network(network, config)
if engineString == None:print("Failed building engine!")exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])for i in range(nInput):cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)for i in range(nIO):context.set_tensor_address(lTensorName[i], int(bufferD[i]))context.execute_async_v3(0)for i in range(nInput, nIO):cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)for i in range(nIO):print(lTensorName[i])print(bufferH[i])for b in bufferD:cudart.cudaFree(b)print("Succeeded running model in TensorRT!")
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ opencv-python
python main.py

输出下面内容并得到para.nzp文件和model.plan
在这里插入图片描述

1.1 建立 Logger(日志记录器)

文件中使用

logger = trt.Logger(trt.Logger.ERROR)

来建立日志记录器

logger = trt.Logger(trt.Logger.VERBOSE)

➢ 可选参数:VERBOSE, INFO, WARNING, ERROR, INTERNAL_ERROR,产生不同等级的日志,由详细到简略

  • VERBOSE: 这是最详细的日志级别,用于记录图构建和优化完成的时间。
  • INFO:这个级别提供了关于模型中检测到的输入和输出网络张量的信息。
  • WARNING:这个级别用于警告信息,例如在构建时发现未标记为输入或输出的张量的数据类型。
  • ERROR: 这个级别表示错误信息,例如在反序列化CUDA引擎时出现了无效的配置。
  • INTERNAL_ERROR:这个级别表示内部错误信息,例如在计算操作的代价时无法找到节点的实现

1.2 Builder 引擎构建器

文件中使用

builder = trt.Builder(logger)

来构建引擎器

常用API
➢ builder.create_network(…) 创建 TensorRT 网络对象
➢ builder.create_optimization_profile() 创建用于 Dyanmic Shape 输入的配置器
➢ Dynamic Shape 模式必须改用 builderConfig 来进行这些设置

1.3 Network 网络具体构造

使用这个

network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

构建网络

常用参数:

1 << int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH),使用 Explicit Batch 模式

一般都使用Explicit Batch显式模式

常用方法

➢ network.add_input( ‘oneTensor’ ,trt.float32, (3,4,5)) 标记网络输入张量

➢ convLayer = network.add_convolution_nd(XXX) 添加各种网络层

➢ network.mark_output(convLayer.get_output(0)) 标记网络输出张量

常用获取网络信息的成员:

➢ network.name / network.num_layers / network.num_inputs / network.num_outputs

➢ network.has_implicit_batch_dimension / network.has_explicit_precision

1.4 Profile 指定输入张量大小范围

#TensorRT 中用于创建优化配置文件的方法。优化配置文件包含了网络优化相关的信息,
#例如输入张量的最小、最优和最大尺寸,以及动态形状的配置。
profile = builder.create_optimization_profile()

常用方法:

➢ profile.set_shape(tensorName, minShape, commonShape, maxShape)
给定输入张量的最小、最常见、最大尺寸

➢ config.add_optimization_profile(profile) 将设置的 profile 传递给 config 以创建网络

1.5 BuilderConfig 网络属性选项

#用于创建 TensorRT 构建器配置的方法。构建器配置对象用于设置构建 TensorRT 引擎时的一些选项和参
#数,例如最大工作空间大小、精度模式等。
config = builder.create_builder_config()

常用成员:

➢config.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPAC E, 1 << 30) 指定构建
期可用显存(单位:Byte)

➢ config.flag = … 设置标志位开关,如启闭 FP16/INT8 模式,Refit 模式,手工数据类型限制等

➢ config.int8_calibrator = … 指定 INT8-PTQ 的校正器

➢ config.add_optimization_profile(…) 添加用于 Dynamic Shape 输入的配置器

➢ config.set_tactic_sources/set_timing_cache/set_preview_feature/ …

1.6 Explicit Batch 模式 v.s. Implicit Batch 模式

Explicit Batch 为 TensorRT 主流 Network 构建方法,Implicit Batch 模式(builder.create_network(0))仅用作后向兼容。需要使用 builder.create_network(1 << int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

Explicit Batch 模式能做、Implicit Batch 模式不能做的事情:

➢ Batch Normalization(视频教程的录音中说成了 Layer Normalization)

➢ Reshape/Transpose/Reduce over batch dimension

➢ Dynamic shape 模式

➢ Loop 结构

➢ 一些 Layer 的高级用法(如 ShufleLayer.set_input)

从 Onnx 导入的模型也默认使用 Explicit Batch 模式

1.7 Dynamic Shape 模式

➢ 适用于输入张量形状在推理时才决定网络

➢ 除了 Batch 维,其他维度也可以推理时才决定

➢ 需要 Explicit Batch 模式

➢ 需要 Optimazation Profile 帮助网络优化

➢ 需用 context.set_input_shape 绑定实际输入数据形状

二、calibrator.py

这段代码是一个使用 TensorRT 进行 INT8 量化校准的示例

#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#import os
from glob import globimport cv2
import numpy as np
import tensorrt as trt
from cuda import cudartclass MyCalibrator(trt.IInt8EntropyCalibrator2):def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):trt.IInt8EntropyCalibrator2.__init__(self)self.imageList = glob(calibrationDataPath + "*.jpg")[:100]self.nCalibration = nCalibrationself.shape = inputShape  # (N,C,H,W)self.buffeSize = trt.volume(inputShape) * trt.float32.itemsizeself.cacheFile = cacheFile_, self.dIn = cudart.cudaMalloc(self.buffeSize)self.oneBatch = self.batchGenerator()print(int(self.dIn))def __del__(self):cudart.cudaFree(self.dIn)def batchGenerator(self):for i in range(self.nCalibration):print("> calibration %d" % i)subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)yield np.ascontiguousarray(self.loadImageList(subImageList))def loadImageList(self, imageList):res = np.empty(self.shape, dtype=np.float32)for i in range(self.shape[0]):res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)return resdef get_batch_size(self):  # necessary APIreturn self.shape[0]def get_batch(self, nameList=None, inputNodeName=None):  # necessary APItry:data = next(self.oneBatch)cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)return [int(self.dIn)]except StopIteration:return Nonedef read_calibration_cache(self):  # necessary APIif os.path.exists(self.cacheFile):print("Succeed finding cahce file: %s" % (self.cacheFile))with open(self.cacheFile, "rb") as f:cache = f.read()return cacheelse:print("Failed finding int8 cache!")returndef write_calibration_cache(self, cache):  # necessary APIwith open(self.cacheFile, "wb") as f:f.write(cache)print("Succeed saving int8 cache!")returnif __name__ == "__main__":cudart.cudaDeviceSynchronize()m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")m.get_batch("FakeNameList")m.get_batch("FakeNameList")m.get_batch("FakeNameList")m.get_batch("FakeNameList")m.get_batch("FakeNameList")

在这段代码中,主要的类是 MyCalibrator 类。这个类继承自 TensorRT 中的 trt.IInt8EntropyCalibrator2 类,它定义了一些必需的方法,用于实现 INT8 校准功能。这些方法包括:

  • get_batch_size 方法:用于返回数据批次的大小。
  • get_batch 方法:用于返回指向 GPU 内存中数据批次的指针。
  • read_calibration_cache 方法:用于尝试读取之前保存的校准缓存文件。
  • write_calibration_cache方法:用于将校准缓存写入到文件中。

创建了一个 MyCalibrator 对象,并传入了一些参数,包括校准数据的路径 calibrationDataPath、校准数据的数量 nCalibration、输入张量的形状 inputShape 和缓存文件的路径 cacheFile。然后,调用了 get_batch 方法多次,以演示校准过程。( def init(self, calibrationDataPath, nCalibration, inputShape, cacheFile)

调用如下

 m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")

最后运行一下

python calibrator.py

得到输出
在这里插入图片描述

三、C++

cd C++
make test

编译得到可执行文件main.exe

./main.exe

输出
在这里插入图片描述

四、构建引擎基础步骤

构建 TensorRT 引擎需要以下步骤:

  1. 创建 TensorRT Builder 对象:
import tensorrt as trt
builder = trt.Builder(trt.Logger(trt.Logger.INFO))
  1. 创建 TensorRT 网络对象:
network = builder.create_network()
  1. 构建网络结构,添加网络层:

# 添加输入层
input_shape = (3, 224, 224)
input_tensor = network.add_input(name="input", dtype=trt.float32, shape=input_shape)# 添加其他层,例如卷积层、池化层等
conv_layer = network.add_convolution(input_tensor, num_output_maps=16, kernel_shape=(3, 3), stride=(1, 1), padding=(1, 1))# 设置其他层的参数和属性# 添加输出层
output = network.add_output(name="output", tensor=conv_layer.get_output(0))
  1. 创建优化器配置器(可选):
builder_config = builder.create_builder_config()
  1. 如果使用 Dynamic Shape 模式,则创建优化配置器
if dynamic_shape_mode:profile = builder.create_optimization_profile()# 配置输入层的最小和最大尺寸profile.set_shape("input", min=(1, 3, 224, 224), opt=(4, 3, 224, 224), max=(16, 3, 224, 224))builder_config.add_optimization_profile(profile)
  1. 设置编译选项和配置(可选):
builder_config.max_workspace_size = 1 << 30  # 设置最大的工作空间大小
builder_config.set_flag(trt.BuilderFlag.GPU_FALLBACK)  # 启用 GPU 回退模式
  1. 还可以设置其他编译选项和配置,例如 DLA 模式、FP16 精度等 构建 TensorRT 引擎:
engine = builder.build_engine(network, builder_config)

总结

继TensorRT英伟达官方示例解析(一)https://blog.csdn.net/m0_70420861/article/details/135761090?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/642771.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【GitHub项目推荐--Awesome-Go/Python/JavaScript/Java】【转载】

Awesome 译为令人惊叹的、极好的&#xff0c;GitHub 上有很多 Awesome 开头的开源项目。比如 Awesome-Go、Awesome-Python。 就像汇总常用的软件一样&#xff0c;GitHub上有大量的开源项目&#xff0c;开发者就会根据需要汇总一些常用的好用的资源&#xff0c;并且根据 Awesom…

OCP NVME SSD规范解读-7.TCG安全日志要求

在OCP NVMe SSD规格中&#xff0c;TCG的相关内容涉及以下几个方面&#xff1a; 活动事件记录&#xff1a; NVMe SSD需要支持记录TCG相关的持久事件日志&#xff0c;用于追踪固态硬盘上发生的与TCG安全功能相关的关键操作或状态变化&#xff0c;如启动过程中的安全初始化、密钥…

当键入网址后,到网页显示,其间发生了什么

解析 URL&#xff1a; 浏览器地址栏输入 URL&#xff0c;浏览器解析 URL&#xff0c;从而生成发送给 web 服务器的请求信息&#xff08;例如 www.example.com&#xff09;。 检查域名缓存&#xff1a; 浏览器查看浏览器缓存系统缓存路由缓存&#xff0c; 如有存在缓存&#x…

SQL注入实战:盲注

盲注&#xff1a; 1、当攻击者利用SQL注入漏洞进行攻击时&#xff0c;有时候web应用程序会显示&#xff0c;后端数据库执行SQL查询返回的错误信息&#xff0c;这些信息能帮助进行SQL注入&#xff0c;但更多时候&#xff0c;数据库没有输出数据web页面&#xff0c;这是攻击者会…

JRT集中打印

之前一直在夯实基础&#xff0c;现在是补demo的时段了。了解过检验集中打印的人知道&#xff0c;集中打印的逻辑有多复杂。既要考虑普通检验报告加上换页。又要考虑微生物报告加上换页&#xff0c;既有A5的报告&#xff0c;也有A4的报告&#xff0c;还要考虑A4打印两个组装A5时…

工程化代码管理高频面试题

1. git常用命令以及工作中都怎么工作 git init 初始化仓库 ​ git status 查看当前各个区域的代码状态。 ​ git log查看commit记录 ​ git reflog查看完整记录 ​ git add 添加工作区代码到暂存区 ​ Git commit 暂存区代码的提交 ​ git reset 代码的版本回退 ​ git stash …

《WebKit 技术内幕》学习之七(3): 渲染基础

3 渲染方式 3.1 绘图上下文&#xff08;GraphicsContext&#xff09; 上面介绍了WebKit的内部表示结构&#xff0c;RenderObject对象知道如何绘制自己&#xff0c;但是&#xff0c;问题是RenderObject对象用什么来绘制内容呢&#xff1f;在WebKit中&#xff0c;绘图操作被定…

finalshell连接linux的kali系统

kali的ssh服务似乎是默认关闭的&#xff0c;笔者在玩CentOS系统时可以直接用finalshell完成连接&#xff0c;但kali不行&#xff0c;需要先手动开启ssh服务。 开启kali的ssh服务 输入【ssh start】命令开启ssh服务&#xff0c;可以用【ssh status】命令查看ssh状态&#xff0c…

第40集《佛法修学概要》

请大家打开讲义第一百零六页。我们讲到大乘的果位。大乘佛法的修学跟小乘最大的差别&#xff0c;主要在于一句话&#xff0c;就是大乘佛法是一种“称性起修&#xff0c;全修在性”。大乘佛法的功德第一个“称性”&#xff0c;这个“称”就是随顺。我们一念明了的心&#xff0c;…

【数据结构】 链栈的基本操作 (C语言版)

目录 一、链栈 1、链栈的定义&#xff1a; 2、链栈的优缺点&#xff1a; 二、链栈的基本操作算法&#xff08;C语言&#xff09; 1、宏定义 2、创建结构体 3、链栈的初始化 4、链栈的进栈 5、链栈的出栈 6、获取栈顶元素 7、栈的遍历输出 8、链栈的判空 9、求链…

AtCoder Beginner Contest 337 A~G

A.Scoreboard(循环) 题意&#xff1a; 两个队伍进行 N N N场比赛。在第 i i i场比赛中 &#xff08; 1 ≤ i ≤ N &#xff09; &#xff08;1≤i≤N&#xff09; &#xff08;1≤i≤N&#xff09;&#xff0c;两队各得到 X i X_i Xi​和 Y i Y_i Yi​分。比赛结束后总分更高…

BACnet网关BL121BN 实现稳定可靠、低成本、简单的楼宇自控协议BACnet转OPC UA解决方案

随着楼宇自控系统的迅猛发展&#xff0c;人们深刻认识到在楼宇暖通行业中&#xff0c;实时、可靠、安全的数据传输至关重要。在此背景下&#xff0c;高性能的楼宇暖通数据传输解决方案——协议转换网关应运而生&#xff0c;广泛应用于楼宇自控和暖通空调系统应用中。 钡铼技术…

[反转链表] [合并两个有序链表][分割链表]

这里写目录标题 反转链表合并两个有序链表分割链表 反转链表 1、题目&#xff1a; 2.思路  思路1&#xff1a;建立一个newHead,取一个节点进行头插。具体做法如下&#xff01; 建立一个newHead(新头)&#xff0c;由于一个节点里面存的是下一个节点的地址&#xff0c;如果取…

VS2019查看文件编码格式

文件->高级保存选项 在这里可以看见现在的编码格式也可以修改编码格式 如果没有高级保存选项的话可以参考这篇博客进行设置

Vue (v-bind指令、el与data的两种写法、理解MVVM、数据代理、V-no事件处理、双向数据绑定V-model、登陆页面实现

V-bind指令 el与data两种写法 MVVM 数据代理 V-no事件处理 V-no用于监听DOM对象 双向数据绑定V-model v-model 指令用来在 input、select、textarea、checkbox、radio 等表单控件元素上创建双向数据绑定&#xff0c;根据表单上的值&#xff0c;自动更新绑定的元素的值。 按钮的…

激光雷达行业梳理1-概述、市场、技术路线

激光雷达作为现代精确测距和感知技术的关键组成部分&#xff0c;在近几年里取得了令人瞩目的发展。作为自动驾驶感知层面的重要一环&#xff0c;相较摄像头、毫米波雷达等其他传感器具有“ 精准、快速、高效作业”的巨大优势&#xff0c;已成为自动驾驶的主传感器之一&#xff…

网络安全的概述

网络空间的概念 2003年美国提出网络空间的概念&#xff1a;一个由信息基础设施组成的互相依赖的网络。 我国官方文件定义&#xff1a;网络空间为继海&#xff0c;陆&#xff0c;空&#xff0c;天以外的第五大人类活动领域 网络安全发展历史 通信保密阶段 --- 计算机安全阶段…

API接口安全总结

接口分类 HTTP接口 RPC接口&#xff08;客户端和服务器端的连接 例如游戏登陆&#xff09;非web协议&#xff0c;PRC 远程过程调用 Remote Procedure Call&#xff0c;其就是一个节点请求另外一个节点提供的服务。当两个物理分离的子系统需要建立逻辑上的关联时&#xff0c;R…

1 认识微服务

1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff1a;将业务的所有…

k8s集群异常恢复

前提、我自己的k8s采用的是单master节点两个从节点部署&#xff0c;我针对单master情况进行恢复说明 场景一&#xff1a;正常开关虚拟机&#xff0c;可直接重启kubelet进行恢复 1、1、一般重启后三个节点都需要检查&#xff0c;输入命令检查kubelet&#xff1a; systemctl s…