科技云报道:金融大模型落地,还需跨越几重山?

科技云报道原创。

时至今日,大模型的狂欢盛宴仍在持续,而金融行业得益于数据密集且有强劲的数字化基础,从一众场景中脱颖而出。

越来越多的公司开始布局金融行业大模型,无论是乐信、奇富科技、度小满、蚂蚁这样的金融科技公司,还是百度智能云、华为、腾讯云等互联网和科技大厂,都推出了金融行业大模型及解决方案,希望抢到金融大模型的“头啖汤”。

从过去的一年看,金融大模型已涉及运营、客服、营销、风控、研究以及贷后等多个场景,但金融机构对大模型的应用仍集中在探索、研发或试用阶段。

据北京商报《2023金融大模型报告》显示,商业银行出于其审慎经营、风险管控的原则,近70%的银行在金融大模型的应用中都仍然处于内部测试、联手建模、团队搭建甚至内部探讨阶段。
在这里插入图片描述
一边是行业进展轰轰烈烈,另一边是金融业谨慎落地,大模型在金融行业到底发挥了怎样的作用?还有哪些挑战阻碍着大模型在金融行业的大规模落地?

大模型赋能金融业

一直以来,金融机构都在通过数字化技术持续挖掘数据价值,比如业内广泛采用的AI技术,在客服、内容生成、视觉识别等领域已带来了明显的价值提升。而大语言模型技术的出世,更是给金融行业的AI技术应用注入了一针“强心剂”。

北京商报《2023金融大模型报告》显示,金融业对大模型在金融领域中的应用都非常看好,有95.45%的机构表示看好金融大模型的应用前景,且有超过一半的机构认为金融机构“非常需要”大模型的应用。

业内普遍认为,大模型在营销、客服、投顾、风控等领域具有广泛的应用价值,有助于金融机构提升服务效率及用户体验、优化风控决策能力、高效响应用户需求,实现金融机构经营效率及服务手段的升级转型。

对此,腾讯公共事务副总裁、腾讯研究院高级顾问冯宏声表示,大模型对金融场景的赋能会有两个方向:

一是,原有场景的升级,即原来金融行业的业务场景、业务内容,可以借助大模型进一步地去强化,提供更智能化、更人性化的服务方式。

受制于原有的一些技术条件,金融机构的数字化建设只是用于特定业务的流程管理。

但是大模型的加持,使得金融机构可以在更多的具体业务场景得到辅助,甚至替代掉原有工作中重复性的部分,包括替代规则化、逻辑化的一些场景。

一个典型的金融场景是风控。传统的风控模型会遇到建模效果有限、小样本数据不足的情况下,会导致性能不达标,单点的防御能力和风险预测能力很难适应业务快速发展的需求。

但基于大模型的风险治理升级会对传统的风控业务流程进行改造,能够实现实现高频率、高精度的专家级建模,全流程自动建模自动上线,跨风险类型的能力泛化。

再比如,在智能交互方面,大模型能提供“真人级”对话效果,对客户的语音识别准确率可达到99%以上。同时,在处理复杂和专业性金融知识上,大模型也具有人工所不具备的能力,这将为金融客服、智能投顾、产品营销等带来一个质的飞跃。

在分析决策方面,大模型能够凭借强大的信息挖掘能力,唤醒金融机构大量沉积的信息,对关键信息进行抽取,为判别式AI小模型进行赋能。

在风险决策、信用评估、反欺诈等场景下,大模型能丰满信息的维度,挖掘出小模型无法覆盖到的区域。大模型与小模型相互搭配,将大大提升金融决策的精准度和效率。

二是,新场景的变革。大模型的出现意味着技术路径转换和技术能力的增强,可以在很多场景当中来替换原有的小模型,比如对话、抽取、内容理解,同时也能够基于大模型开发出很多场景。

比如,在中后台场景中,代码是一个最根本的保障。

通过基于大模型的AI代码助手,可以建立代码补全、自动化测试、代码诊断、技术对话的能力,减轻人工撰写代码的负担,也能够提升代码质量,进一步提升敏捷开发的效率。

在AI开发层面,大模型的自动生成能力也将颠覆传统机器学习模型开发“手工作坊”的模式,大模型工程师只需要下达清晰的指令,用文字描述出需求,即能自动生成模型,极大提升机器学习的开发效率和生产模式。

长期去看,现在的大模型技术也会叠加一些外设的设备,产生更多的Agent(智能体),从而不断去重构应用场景。

金融大模型落地面临多重挑战

尽管金融业普遍看好大模型的未来发展,但在谈及落地时,金融机构大多认为需较长时间才能解决大模型所面临的合规、安全、隐私等问题。更多的金融机构和服务商认为,3-5年内金融大模型才会大范围落地,也有少部分机构认为落地时间需要5-10年甚至更久。

首要的挑战来自数据安全合规。

金融行业本身对数据安全和隐私合规有着严格的要求,注定了金融大模型在采集、传输、加工及处理信息的各个环节,都要比通用大模型乃至其他行业大模型更为谨慎。

数据是不同金融机构的核心生产力,关系着自身的护城河问题。

大模型发展需要高质量数据集,同时又受限于自身远远不及通用语料的数据规模,就必然需要不同业态完成数据共享。如何构建一个合理且安全的机制,考验的是整个金融行业的智慧。

其次,可靠性仍是大模型在金融领域落地的鸿沟。

金融机构对模型精度和效率要求高,尤其是一些专业性强、知识密度高的领域,大模型的表现存在输出结果不受控、可解释性较差、可信程度较低等情况,从而限制了其应用场景。

因此,金融大模型的发展,要处理好金融业务数据如何融入到大模型中,以及如何控制幻觉问题等模型缺陷问题。

所谓“幻觉”,指的是人工智能模型生成的内容,不是基于任何现实世界的数据,而是大模型自己想象的产物,即给出事实错误或者是一些看上去权威正确的虚假信息。

如果无法有效发现“幻觉”中的漏洞,那么将很可能导致金融大模型出现理解或判断上的偏差,直接影响应用效果。

为了将大模型更好地“缝合”到业务场景中,提升可靠性、安全性和流畅度,各大厂商的主流方案有三种:

一是将大模型与专业领域的小模型结合,大模型负责认知、理解、沟通、创作,小模型负责把握风险、承载严谨的逻辑;

二是将大模型的参数知识与结构化、显性化、可靠的金融知识图谱相结合,此举能很好地为大模型注入可靠性;

三是将开放QA(问答)和封闭QA的结合,让大模型得到请求指令后,在专业知识领域内进行检索,大幅提高准确性。

最后,成本也是金融大模型走向商业化落地的重要因素。

金融的本质是风控,大模型在优化金融业务流程和用户体验的同时,也需要降低大模型高昂的迭代和训练成本。

一些金融机构选择利用大数据的整合,在垂直领域精调模型,以小规模算力打造轻量级精调模型,将成本降到最低。

此外,在大模型技术的应用过程中带来的伦理道德、价值观等问题,需要法律法规的约束,这些在未来都需要进一步厘清和给出明确的规定指引。

总的来看,金融数据不充分、研发成本较高、大模型在金融垂直领域仍未挖掘出涌现效应等挑战,使得大模型落地实际效果和预期业务价值之间存在差异。

金融大模型落地的真正难点在于,能否在产业中扎得更深;其颠覆性也更建立在,纵深到产业中去,赋能金融行业的数字化发展。

从更大的视角来看,随着金融大模型标准的落地,数据合规、隐私安全和训练工艺等问题一一得到解决,金融大模型一定会撬动更多的岗位,解决当下无法解决的问题,带来更大的产业价值。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641424.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?

经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。 下面给出几个链接,可以用于平时充电学习。 知乎上的: 机器学…

计算机毕业设计 基于SpringBoot的律师事务所案件管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

git merge和git rebase区别

具体详情 具体常见如下,假设有master和change分支,从同一个节点分裂,随后各自进行了两次提交commit以及修改。随后即为change想合并到master分支中,但是直接git commit和git push是不成功的,因为分支冲突了【master以…

上位机图像处理和嵌入式模块部署(流程)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 前面我们说过,传统图像处理的方法,一般就是pccamera的处理方式。camera本身只是提供基本的raw data数据,所有的…

基于ADAS的车道线检测算法matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 图像预处理 4.2 车道线特征提取 4.3 车道线跟踪 5.完整工程文件 1.课题概述 基于ADAS的车道线检测算法,通过hough变换和边缘检测方法提取视频样板中的车道线,然后根据车道线的弯曲情况…

Linux/Mac 命令行工具 tree 开发项目结构可以不用截图了 更方便 更清晰 更全

tree 是一个命令行工具,用于以树形结构显示文件系统目录的内容。它可用于列出指定目录下的所有文件和子目录,以及它们的层次关系。tree 命令在许多操作系统中都可用,包括Unix、Linux和macOS。 效果如下: 一、安装 linux # De…

Prometheus+Grafana监控Mysql数据库

Promethues Prometheus https://prometheus.io Prometheus是一个开源的服务监控系统,它负责采集和存储应用的监控指标数据,并以可视化的方式进行展示,以便于用户实时掌握系统的运行情况,并对异常进行检测。因此,如何…

Spring Boot3整合knife4j(swagger3)

目录 1.前置条件 2.导依赖 3.配置 1.前置条件 已经初始化好一个spring boot项目且版本为3X,项目可正常启动。 作者版本为3.2.2最新版 2.导依赖 knife4j官网: Knife4j 集Swagger2及OpenAPI3为一体的增强解决方案. | Knife4j (xiaominfo.com)http…

R语言简介

1.R语言 R语言是一种数学编程语言,主要用于统计分析、绘图和数据挖掘。 2.R语言特点 免费、开源,兼容性好(Windows、MacOS或Linux)。具有多种数据类型,如向量、矩阵、因子、数据集等常用数据结构。多用于交互式数据分析&#x…

股权众筹模式介绍(下)

3、线上线下两段式投资 对于已经成成立并运营的企业来说,由于《证券法》明确规定,向“不特定对象发行证券”以及“向特定对象发行证券累计超过200人”的行为属于公开发行证券,必须通过证监会核准,由证券公司承销。这些规定限定了…

RTDETR 引入 UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv

大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets…

小程序商城 免 费 搭 建之java商城 电子商务Spring Cloud+Spring Boot+二次开发+mybatis+MQ+VR全景+b2b2c

java SpringCloud版本b2b2c鸿鹄云商平台全套解决方案 使用技术: Spring CloudSpring BootMybatis微服务服务监控可视化运营 B2B2C平台: 平台管理端(包含自营) 商家平台端(多商户入驻) PC买家端、手机wap/公众号买家端 微服务(30个通用…

Unity中URP下的SimpleLit的 BlinnPhong高光反射计算

文章目录 前言一、回顾Blinn-Phong光照模型1、Blinn-Phong模型: 二、URP下的SimpleLit的 BlinnPhong1、输入参数2、程序体计算 前言 在上篇文章中,我们分析了 URP下的SimpleLit的 Lambert漫反射计算。 Unity中URP下的SimpleLit的 Lambert漫反射计算 我…

Java基于沙箱环境实现支付宝支付

一、支付宝沙箱环境介绍 沙箱环境是支付宝开放平台为开发者提供的安全低门槛的测试环境,开发者在沙箱环境中调用接口无需具备所需的商业资质,无需绑定和开通产品,同时不会对生产环境中的数据造成任何影响。合理使用沙箱环境,可以…

Android14实战:调整A2DP音量曲线(五十三)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

【Linux install】Ubuntu和win双系统安装及可能遇到的所有问题

文章目录 1.前期准备1.1 制作启动盘1.2关闭快速启动、安全启动、bitlocker1.2.1 原因1.2.2 进入BIOSshell命令行进入BIOSwindows设置中高级启动在开机时狂按某个键进入BIOS 1.2.3 关闭Fast boot和Secure boot 1.3 划分磁盘空间1.3.1 查看目前的虚拟内存大小 2.开始安装2.1 使用…

大模型的学习路线图推荐—多维度深度分析【云驻共创】

🐲本文背景 近年来,随着深度学习技术的迅猛发展,大模型已经成为学术界和工业界的热门话题。大模型具有数亿到数十亿的参数,这使得它们在处理复杂任务时表现得更为出色,但同时也对计算资源和数据量提出了更高的要求。 …

源 “MySQL 5.7 Community Server“ 的 GPG 密钥已安装,但是不适用于此软件包。请检查源的公钥 URL 是否配置正确

Is this ok [y/d/N]: y Downloading packages: 警告:/var/cache/yum/x86_64/7/mysql57-community/packages/mysql-community-server-5.7.44-1.el7.x86_64.rpm: 头V4 RSA/SHA256 Signature, 密钥 ID 3a79bd29: NOKEY 从 file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql 检…

canvas绘制旋转的椭圆花

查看专栏目录 canvas实例应用100专栏,提供canvas的基础知识,高级动画,相关应用扩展等信息。canvas作为html的一部分,是图像图标地图可视化的一个重要的基础,学好了canvas,在其他的一些应用上将会起到非常重…

MySQL-函数-日期函数

常见的日期函数 案例