灰度图像的自动阈值分割

第一种:Otsu (大津法)

一、基于cv2的API调用

1、代码实现

直接给出相关代码:

import cv2
import matplotlib.pylab as pltpath = r"D:\Desktop\00aa\1.png"
img = cv2.imread(path, 0)def main2():ret, thresh1 = cv2.threshold(img, 0, 1, cv2.THRESH_BINARY+cv2.THRESH_OTSU)print(ret)  # 输出阈值。thresh1是阈值图像titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main2()

2、参数详解

ret, binary_image = cv2.threshold(image, threshold_value, max_value, type)

cv2.threshold()的参数如下:

  • image:要处理的输入图像,可以是灰度图像或彩色图像,类型为uint8或者uint16,否则会报错
  • threshold_value:设定的阈值,如果像素值大于该阈值,则将其设为max_value,否则将其设为0。即:用于分割像素的阈值。
  • max_value:高于阈值的像素所设置的值,默认为255。即:高于threshold_value的设置为该值,也就是最后二值图像中的最大值。
  • type:阈值化的类型,有以下几种可选:
    • cv2.THRESH_BINARY:二值化阈值化,大于阈值的像素值设为max_value,小于等于阈值的像素值设为0。
    • cv2.THRESH_BINARY_INV:反二值化阈值化,大于阈值的像素值设为0,小于等于阈值的像素值设为max_value。
    • cv2.THRESH_TRUNC:截断阈值化,大于阈值的像素值设为阈值,小于等于阈值的像素值不变。
    • cv2.THRESH_TOZERO:阈值化为0,大于阈值的像素值不变,小于等于阈值的像素值设为0。
    • cv2.THRESH_TOZERO_INV:反阈值化为0,大于阈值的像素值设为0,小于等于阈值的像素值不变。

3、为什么用的是cv2.THRESH_BINARY+cv2.THRESH_OTSU

将 cv2.THRESH_BINARY 和 cv2.THRESH_OTSU 结合使用可以发挥它们的优势,尤其适用于那些具有不同对比度区域的图像。这种组合利用大津算法自动选择最佳阈值,然后将图像进行二值化。

但是经过测试,没有THRESH_BINARY的结果也是一样的,所以需不需要根据自己需求。

1)了解 cv2.THRESH_BINARY

一种基本的二值化方法,它使用一个用户指定的固定阈值将图像中的像素分为两类:高于阈值和低于阈值。简而言之,像素值大于阈值的被设为一个值(通常是255),而像素值小于阈值的被设为另一个值(通常是0)。

ret, binary_image = cv2.threshold(image, threshold_value, max_value, cv2.THRESH_BINARY)
  • image: 输入的灰度图像。
  • threshold_value: 用于分割像素的阈值。
  • max_value: 高于阈值的像素所设置的值。
  • cv2.THRESH_BINARY: 指定使用二进制阈值化。
2)了解 cv2.THRESH_OTSU

大津算法,它是一种自动确定阈值的方法。该算法会分析图像的直方图,找到能够最佳区分前景和背景的阈值。这使得它特别适用于前景和背景对比度差异较大的图像。

ret, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
  • image: 输入的灰度图像。
  • 0: 这里将阈值设置为0,但实际上会被 cv2.THRESH_OTSU 自动确定。
  • 255: 高于阈值的像素所设置的值。
  • cv2.THRESH_BINARY+cv2.THRESH_OTSU: 结合了二进制阈值和大津法。

4、注意

输入的灰度图像必须是uint8或者uint16类型,如果不是需要进行转换。

img = img.astype(np.uint16)

此外,数据中如果有负值,那么计算返回的阈值会一直显示为最大值,此时需要将负值去除或重置为正数,也可以利用最大最小归一化技术在乘以255。

import numpy as nppath = r"D:\Desktop\00aa\1.png"
img = cv2.imread(path, 0)def normalize(arr):min_val = np.min(arr)max_val = np.max(arr)normalized_arr = (arr - min_val) / (max_val - min_val)return normalized_arrimg = normalize(img)*255
img = img.astype(np.uint16)

在cv2.threshold函数中,我们设置的两个数值,第一个就是阈值(OTSU会自动学习,设置多少无所谓),根据该阈值进行分割;第二个是将二值图像中的最大值设置为多少,即设置5,那么的到的二值图像就是0和5。

二、使用numpy实现

import cv2
import matplotlib.pylab as plt
import numpy as nppath = r"D:\Desktop\00aa\1.png"
img = cv2.imread(path, 0)def OTSU(img_gray, GrayScale): # GrayScale:灰度图中灰度值的最大值,这里需要在将此值加1。即:灰度图最大值+1assert img_gray.ndim == 2, "must input a gary_img"  # shape有几个数字, ndim就是多少img_gray = np.array(img_gray).ravel().astype(np.uint8)u1 = 0.0  # 背景像素的平均灰度值u2 = 0.0  # 前景像素的平均灰度值th = 0.0# 总的像素数目PixSum = img_gray.size# 各个灰度值的像素数目PixCount = np.zeros(GrayScale)# 各灰度值所占总像素数的比例PixRate = np.zeros(GrayScale)# 统计各个灰度值的像素个数for i in range(PixSum):# 默认灰度图像的像素值范围为GrayScalePixvalue = img_gray[i]PixCount[Pixvalue] = PixCount[Pixvalue] + 1# 确定各个灰度值对应的像素点的个数在所有的像素点中的比例。for j in range(GrayScale):PixRate[j] = PixCount[j] * 1.0 / PixSumMax_var = 0# 确定最大类间方差对应的阈值for i in range(1, GrayScale):  # 从1开始是为了避免w1为0.u1_tem = 0.0u2_tem = 0.0# 背景像素的比列w1 = np.sum(PixRate[:i])# 前景像素的比例w2 = 1.0 - w1if w1 == 0 or w2 == 0:passelse:  # 背景像素的平均灰度值for m in range(i):u1_tem = u1_tem + PixRate[m] * mu1 = u1_tem * 1.0 / w1# 前景像素的平均灰度值for n in range(i, GrayScale):u2_tem = u2_tem + PixRate[n] * nu2 = u2_tem / w2# print(u1)# 类间方差公式:G=w1*w2*(u1-u2)**2tem_var = w1 * w2 * np.power((u1 - u2), 2)# print(tem_var)# 判断当前类间方差是否为最大值。if Max_var < tem_var:Max_var = tem_var  # 深拷贝,Max_var与tem_var占用不同的内存空间。th = ireturn thdef main():# 将图片转为灰度图th = OTSU(img, 256)print("使用numpy的方法:" + str(th))ret, thresh1 = cv2.threshold(img, th, 1, cv2.THRESH_BINARY)titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

两种实现结果基本一致

第二种:自适应阈值分割(局部阈值化)

自适应阈值分割,也称为局部阈值化,是根据像素的邻域块的像素值分布来确定该像素位置上的阈值。这种方法的好处是每个像素位置的阈值是根据其周围邻域像素的分布来确定的,因此不是固定不变的。不同亮度、对比度和纹理的局部图像区域将拥有不同的局部阈值。

常用的局部自适应阈值有:1)局部邻域块的均值;2)局部邻域块的高斯加权和。
 

在OPenCV中实现自适应阈值分割的API是:

dst = cv.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)

参数:

  • src: 输入图像,一般是灰度图
  • Maxval:灰度中的最大值,一般为255,用来指明像素超过或小于阈值(与type类型有关),赋予的最大值
  • thresh_type : 阈值的计算方法,主要有以下两种:
  • type: 阈值方式,与threshold中的type意义相同
  • block_size: 计算局部阈值时取邻域的大小,如果设为11,就取11*11的邻域范围,一般为奇数。
  • C: 阈值计算方法中的常数项,即最终的阈值是邻域内计算出的阈值与该常数项的差值

返回:

  • dst:自适应阈值分割的结果

即type类型:

代码演示:

import cv2 as cv
import matplotlib.pyplot as plt# 1. 图像读取
img = cv.imread(r"D:\Desktop\00aa\1.png", 0) # 转为灰度图# 2.固定阈值/阈值分割 threshold(要处理的图像,一般是灰度图, 设定的阈值, 灰度中的最大值, 阈值分割的方式)
ret, th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)# 3.自适应阈值
# 3.1 邻域内求均值 cv.adaptiveThreshold(输入图像, 灰度中的最大值, 阈值的计算方法, 阈值方式,计算局部阈值时取邻域的大小,阈值计算方法中的常数项)
th2 = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 4)
# 3.2 邻域内高斯加权
th3 = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 17, 6)# 4 结果绘制
titles = ['Original drawing', 'Global threshold (v = 127)', 'Adaptive threshold (averaging)','Adaptive threshold (Gaussian weighted)']
images = [img, th1, th2, th3]
plt.figure(figsize=(10, 6))
for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i], fontsize=8)plt.xticks([]), plt.yticks([])
plt.show()

参考:图像二值化阈值调整、OpenCV 中的二值化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【CentOS】Linux 在线帮助文档命令:help、man 命令与文档汉化

目录 1、Linux 的命令行模式 2、help 命令 3、man 命令 4、man 命令输出文档汉化 注&#xff1a;本文档使用 Linux 版本为 CentOS 7.9 [swadianlocalhost ~]$ cat /etc/centos-release CentOS Linux release 7.9.2009 (Core) 1、Linux 的命令行模式 一般情况下&#xff0…

喜讯 | 华院计算摘得“2023大数据产业年度创新技术突破”奖

2024年1月17日&#xff0c; 由数据猿和上海大数据联盟主办&#xff0c;上海市经济和信息化委员会、上海市科学技术委员会指导的“第六届金猿季&魔方论坛——大数据产业发展论坛”在上海市四行仓库举行。论坛以“小趋势大未来”为主题&#xff0c;围绕大数据产业的各个领域展…

MySQL-SQL-DQL

DQL-介绍 DQL-语法 基本查询 1、查询多个字段 2、设置别名 3、去除重复记录 条件查询 1、语法 2、条件 聚合函数 1、介绍 2、常见的聚合函数 3、语法 分组查询 1、语法 2、where与having区别 排序查询 1、语法 2、排序方式 分页查询 1、语法 DQL-执行顺序

ubuntu 安装protobuf

apt 安装 sudo apt install protobuf-compiler 编译安装 – 方式1 资料链接&#xff1a;ubuntu环境 安装ncnn_ubuntu ncnn_jbyyy、的博客-CSDN博客 git clone https://github.com/google/protobuf.git cd protobuf git submodule update --init --recursive ./autogen.sh …

关于php8的数据类型转换

目录 1、数据类型介绍 1.1 简单数据类型&#xff1a; 1.2 复合数据类型&#xff1a; 1.3 特殊数据类型&#xff1a; 2、数据类型转换 2.1 自动转换&#xff1a; 2.2 强制&#xff08;手动&#xff09;转换&#xff1a; 3、验证数据类型途径 &#xff08;1&#xff09;var…

2024年第3周农产品价格监测报告

一、摘要 农产品价格监测主要涉及对畜禽类产品、水产品、蔬菜类产品、水果类产品的价格&#xff0c;以周为单位&#xff0c;进行变化情况的数据监测。其中&#xff0c;蔬菜类产品共8种&#xff0c;分别为菜花、韭菜、豆角、西红柿、胡萝卜、土豆、大葱、葱头。 本周重点监测的…

Element组件完整引入、按需引入、样式修改(全局、局部)、简单安装less以及npm命令证书过期等

目录 一、npm 安装二、完整引入三、按需引入四、样式修改1.按需加载的全局样式修改2. 局部样式修改1. 在 css 预处理器如 less scss 等直接使用::v-deep2. 只能用在原生 CSS 语法中:/deep/ 或者 >>> 五、 拓展&#xff1a;npm 安装less报错&#xff0c;提示证书过期六…

斯拉、理想等车企大幅降价,新一轮大洗牌正在进行中 |百能云芯

2024年刚开年&#xff0c;各大车企就先后抛出降价大礼包&#xff01;1月1日&#xff0c;特斯拉率先宣布调价&#xff0c;推出Model 3后驱现车保险补贴及低息金融政策&#xff0c;总优惠幅度高达2.2万元。正当大家还没有完全消化完特斯拉的调价信息后&#xff0c;理想汽车也宣布…

Unity中URP下的 额外灯 逐像素光 和 逐顶点光

文章目录 前言一、额外灯 的 逐像素灯 和 逐顶点灯1、存在额外灯的逐像素灯2、存在额外灯的逐顶点灯 二、测试这两个宏的作用1、额外灯的逐像素灯2、额外灯的逐顶点灯 前言 在之前的文章中&#xff0c;我们了解了 主光相关的反射计算。 Unity中URP下的SimpleLit的 Lambert漫反…

有效的数独[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 请你判断一个9 x 9的数独是否有效。只需要根据以下规则&#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一…

Elasticsearch:介绍 kNN query,这是进行 kNN 搜索的专家方法

作者&#xff1a;来自 Elastic Mayya Sharipova, Benjamin Trent 当前状况&#xff1a;kNN 搜索作为顶层部分 Elasticsearch 中的 kNN 搜索被组织为搜索请求的顶层&#xff08;top level&#xff09;部分。 我们这样设计是为了&#xff1a; 无论分片数量多少&#xff0c;它总…

实现纯Web语音视频聊天和桌面分享(附源码,PC端+移动端)

在网页里实现文字聊天是比较容易的&#xff0c;但若要实现视频聊天&#xff0c;就比较麻烦了。本文将实现一个纯Web版的视频聊天和桌面分享的Demo&#xff0c;可直接在浏览器中运行&#xff0c;不需要安装任何插件。 一. 主要功能及支持平台 1.本Demo的主要功能有 &#xff…

【书生·浦语】大模型实战营——第六次作业

使用OpenCompass 评测 InterLM2-chat-chat-7B 模型在C-Eval数据集上的性能 环境配置 1. 创建虚拟环境 conda create --name opencompass --clone/root/share/conda_envs/internlm-base source activate opencompass git clone https://github.com/open-compass/opencompass cd…

【PWN · 格式化字符串|劫持fini_array|劫持got表】[CISCN 2019西南]PWN1

格式化字符串的经典利用&#xff1a;劫持got表。但是遇到漏洞点只能执行一次的情况&#xff0c;该怎么办&#xff1f; 前言 如果存在格式化字符串&#xff0c;保护机制开的不健全&#xff0c;通常可以劫持got表&#xff0c;构造后门函数。然而&#xff0c;如果不存在循环、栈溢…

gradle打包分离依赖jar

正常打包的jar是包含项目所依赖的jar包资源&#xff0c;而且大多数场景下的依赖资源是不会频繁的变更的&#xff0c;所以实际把项目自身jar和其所依赖的资源分离可以实现jar包瘦身&#xff0c;减小上传的jar包总大小&#xff0c;能实现加速部署的效果 一 原本结构 二 配置buil…

机器学习_正则化、欠拟合和过拟合

文章目录 正则化欠拟合和过拟合正则化参数 正则化 机器学习中的正则化是在损失函数里面加惩罚项&#xff0c;增加建模的模糊性&#xff0c;从而把捕捉到的趋势从局部细微趋势&#xff0c;调整到整体大概趋势。虽然一定程度上地放宽了建模要求&#xff0c;但是能有效防止过拟合…

用通俗易懂的方式讲解:使用 MongoDB 和 Langchain 构建生成型AI聊天机器人

想象一下&#xff1a;你收到了你梦寐以求的礼物&#xff1a;一台非凡的时光机&#xff0c;可以将你带到任何地方、任何时候。 你只有10分钟让它运行&#xff0c;否则它将消失。你拥有一份2000页的PDF&#xff0c;详细介绍了关于这台时光机的一切&#xff1a;它的历史、创造者、…

【计算机网络】应用层——HTTP 协议(一)

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】 本专栏旨在分享学习计算机网络的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、什么是 HTTP 协…

假期刷题打卡--Day10

一、C语言刷题 预处理命令模块的题目就只有几个&#xff0c;下面开始选择结构这个模块的题目。 1、MT1112中庸之道 请编写一个简单程序&#xff0c;输入3个整数&#xff0c;比较他们的大小&#xff0c;输出中间的那个数 格式 输入格式&#xff1a; 输入整型&#xff0c;空…

linux源码编译安装llvm

目录 1 建立文件夹llvm 2 下载源码到llvm文件夹 3 解压上述文件 4 将解压后的3个文件夹改名&#xff0c;并移动到llvm-9.0.0.src中&#xff1a; 5 在llvm文件夹内建立build文件夹&#xff0c;并进入该文件夹&#xff1a; 6 执行cmake命令 7 make 8 安装 9 安装成功后…