记录一个好用的pytorch模型转caffe模型的方法,源码链接如下:
https://github.com/xxradon/PytorchToCaffe
把代码clone下来后,进入example目录便可查看示例,
cd example
python resnet_pytorch_2_caffe.py
import sys
sys.path.insert(0,'.')
import torch
from torch.autograd import Variable
from torchvision.models import resnet
import pytorch_to_caffeif __name__=='__main__':## 转换后的模型名称name='resnet18'## 待转换的pytorch模型resnet18=resnet.resnet18()## pt模型权重checkpoint = torch.load("/home/shining/Downloads/resnet18-5c106cde.pth")## 加载模型resnet18.load_state_dict(checkpoint)resnet18.eval()## 输入张量input=torch.ones([1, 3, 224, 224])## 模型转换pytorch_to_caffe.trans_net(resnet18, input,name)pytorch_to_caffe.save_prototxt('{}.prototxt'.format(name))pytorch_to_caffe.save_caffemodel('{}.caffemodel'.format(name))
如果想实现把pytorch的flatten转换至caffe中,需修改脚本:pytorch_to_caffe.py。修改后的脚本内容如下,
import torch
import torch.nn as nn
import traceback
from Caffe import caffe_net
import torch.nn.functional as F
from torch.autograd import Variable
from Caffe import layer_param
from torch.nn.modules.utils import _pair
import numpy as npclass Blob_LOG():def __init__(self):self.data={}def __setitem__(self, key, value):self.data[key]=valuedef __getitem__(self, key):return self.data[key]def __len__(self):return len(self.data)NET_INITTED=Falseclass TransLog(object):def __init__(self):"""doing init() with inputs Variable before using it"""self.layers={}self.detail_layers={} self.detail_blobs={} self._blobs=Blob_LOG()self._blobs_data=[]self.cnet=caffe_net.Caffemodel('')self.debug=Truedef init(self,inputs):""":param inputs: is a list of input variables"""self.add_blobs(inputs)def add_layer(self,name='layer'):if name in self.layers:return self.layers[name]if name not in self.detail_layers.keys():self.detail_layers[name] =0self.detail_layers[name] +=1name='{}{}'.format(name,self.detail_layers[name])self.layers[name]=nameif self.debug:print("{} was added to layers".format(self.layers[name]))return self.layers[name]def add_blobs(self, blobs,name='blob',with_num=True):rst=[]for blob in blobs:self._blobs_data.append(blob) # to block the memory address be rewritedblob_id=int(id(blob))if name not in self.detail_blobs.keys():self.detail_blobs[name] =0self.detail_blobs[name] +=1 if with_num:rst.append('{}{}'.format(name,self.detail_blobs[name]))else:rst.append('{}'.format(name))if self.debug:print("{}:{} was added to blobs".format(blob_id,rst[-1]))# print('Add blob {} : {}'.format(rst[-1].center(21),blob.size()))self._blobs[blob_id]=rst[-1]return rstdef blobs(self, var):var=id(var)# if self.debug:# print("{}:{} getting".format(var, self._blobs[var]))try:return self._blobs[var]except:print("WARNING: CANNOT FOUND blob {}".format(var))return Nonelog=TransLog()layer_names={}
def _conv2d(raw,input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):print('conv: ',log.blobs(input))x=raw(input,weight,bias,stride,padding,dilation,groups)name=log.add_layer(name='conv')log.add_blobs([x],name='conv_blob')layer=caffe_net.Layer_param(name=name, type='Convolution',bottom=[log.blobs(input)], top=[log.blobs(x)])layer.conv_param(x.size()[1],weight.size()[2:],stride=_pair(stride),pad=_pair(padding),dilation=_pair(dilation),bias_term=bias is not None,groups=groups)if bias is not None:layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())else:layer.param.convolution_param.bias_term=Falselayer.add_data(weight.cpu().data.numpy())log.cnet.add_layer(layer)return xdef _conv_transpose2d(raw,input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):x=raw(input, weight, bias, stride, padding, output_padding, groups, dilation)name=log.add_layer(name='conv_transpose')log.add_blobs([x],name='conv_transpose_blob')layer=caffe_net.Layer_param(name=name, type='Deconvolution',bottom=[log.blobs(input)], top=[log.blobs(x)])layer.conv_param(x.size()[1],weight.size()[2:],stride=_pair(stride),pad=_pair(padding),dilation=_pair(dilation),bias_term=bias is not None, groups = groups)if bias is not None:layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())else:layer.param.convolution_param.bias_term=Falselayer.add_data(weight.cpu().data.numpy())log.cnet.add_layer(layer)return xdef _linear(raw,input, weight, bias=None):x=raw(input,weight,bias)layer_name=log.add_layer(name='fc')top_blobs=log.add_blobs([x],name='fc_blob')layer=caffe_net.Layer_param(name=layer_name,type='InnerProduct',bottom=[log.blobs(input)],top=top_blobs)layer.fc_param(x.size()[1],has_bias=bias is not None)if bias is not None:layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())else:layer.add_data(weight.cpu().data.numpy())log.cnet.add_layer(layer)return xdef _split(raw,tensor, split_size, dim=0):# split in pytorch is slice in caffex=raw(tensor, split_size, dim)layer_name=log.add_layer('split')top_blobs=log.add_blobs(x,name='split_blob')layer=caffe_net.Layer_param(name=layer_name, type='Slice',bottom=[log.blobs(tensor)], top=top_blobs)slice_num=int(np.floor(tensor.size()[dim]/split_size))slice_param=caffe_net.pb.SliceParameter(axis=dim,slice_point=[split_size*i for i in range(1,slice_num)])layer.param.slice_param.CopyFrom(slice_param)log.cnet.add_layer(layer)return xdef _pool(type,raw,input,x,kernel_size,stride,padding,ceil_mode):# TODO dilation,ceil_mode,return indiceslayer_name = log.add_layer(name='{}_pool'.format(type))top_blobs = log.add_blobs([x], name='{}_pool_blob'.format(type))layer = caffe_net.Layer_param(name=layer_name, type='Pooling',bottom=[log.blobs(input)], top=top_blobs)# TODO w,h different kernel, stride and padding# processing ceil modelayer.pool_param(kernel_size=kernel_size, stride=kernel_size if stride is None else stride,pad=padding, type=type.upper() , ceil_mode = ceil_mode)log.cnet.add_layer(layer)if ceil_mode==False and stride is not None:oheight = (input.size()[2] - _pair(kernel_size)[0] + 2 * _pair(padding)[0]) % (_pair(stride)[0])owidth = (input.size()[3] - _pair(kernel_size)[1] + 2 * _pair(padding)[1]) % (_pair(stride)[1])if oheight!=0 or owidth!=0:caffe_out=raw(input, kernel_size, stride, padding, ceil_mode=True)print("WARNING: the output shape miss match at {}: ""input {} output---Pytorch:{}---Caffe:{}\n""This is caused by the different implementation that ceil mode in caffe and the floor mode in pytorch.\n""You can add the clip layer in caffe prototxt manually if shape mismatch error is caused in caffe. ".format(layer_name,input.size(),x.size(),caffe_out.size()))def _max_pool2d(raw,input, kernel_size, stride=None, padding=0, dilation=1,ceil_mode=False, return_indices=False):x = raw(input, kernel_size, stride, padding, dilation,ceil_mode, return_indices)_pool('max',raw,input, x, kernel_size, stride, padding,ceil_mode)return xdef _avg_pool2d(raw, input, kernel_size, stride = None, padding = 0, ceil_mode = False, count_include_pad = True, divisor_override=None): x = raw(input, kernel_size, stride, padding, ceil_mode, count_include_pad) _pool('ave',raw,input, x, kernel_size, stride, padding,ceil_mode) return xdef _adaptive_avg_pool2d(raw, input, output_size):x = raw(input, output_size)if isinstance(output_size, int):out_dim = output_sizeelse:out_dim = output_size[0]tmp = max(input.shape[2], input.shape[3])stride = tmp //out_dimkernel_size = tmp - (out_dim - 1) * stride_pool('ave', raw, input, x, kernel_size, stride, 0, False)return xdef _max(raw,*args):x=raw(*args)if len(args)==1:# TODO max in one tensorassert NotImplementedErrorelse:bottom_blobs=[]for arg in args:bottom_blobs.append(log.blobs(arg))layer_name=log.add_layer(name='max')top_blobs=log.add_blobs([x],name='max_blob')layer=caffe_net.Layer_param(name=layer_name,type='Eltwise',bottom=bottom_blobs,top=top_blobs)layer.param.eltwise_param.operation =2log.cnet.add_layer(layer)return xdef _cat(raw, inputs, dimension=0):x=raw(inputs, dimension)bottom_blobs=[]for input in inputs:bottom_blobs.append(log.blobs(input))layer_name=log.add_layer(name='cat')top_blobs=log.add_blobs([x],name='cat_blob')layer=caffe_net.Layer_param(name=layer_name,type='Concat',bottom=bottom_blobs,top=top_blobs)layer.param.concat_param.axis =dimensionlog.cnet.add_layer(layer)return xdef _dropout(raw,input,p=0.5, training=False, inplace=False):x=raw(input,p, training, inplace)bottom_blobs=[log.blobs(input)]layer_name=log.add_layer(name='dropout')top_blobs=log.add_blobs([x],name=bottom_blobs[0],with_num=False)layer=caffe_net.Layer_param(name=layer_name,type='Dropout',bottom=bottom_blobs,top=top_blobs)layer.param.dropout_param.dropout_ratio = player.param.include.extend([caffe_net.pb.NetStateRule(phase=0)]) # 1 for test, 0 for trainlog.cnet.add_layer(layer)return xdef _threshold(raw,input, threshold, value, inplace=False):# for threshold or reluif threshold==0 and value==0:x = raw(input,threshold, value, inplace)bottom_blobs=[log.blobs(input)]name = log.add_layer(name='relu')log.add_blobs([x], name='relu_blob')layer = caffe_net.Layer_param(name=name, type='ReLU',bottom=bottom_blobs, top=[log.blobs(x)])log.cnet.add_layer(layer)return xif value!=0:raise NotImplemented("value !=0 not implemented in caffe")x=raw(input,input, threshold, value, inplace)bottom_blobs=[log.blobs(input)]layer_name=log.add_layer(name='threshold')top_blobs=log.add_blobs([x],name='threshold_blob')layer=caffe_net.Layer_param(name=layer_name,type='Threshold',bottom=bottom_blobs,top=top_blobs)layer.param.threshold_param.threshold = thresholdlog.cnet.add_layer(layer)return xdef _relu(raw, input, inplace=False):# for threshold or prelux = raw(input, False)name = log.add_layer(name='relu')log.add_blobs([x], name='relu_blob')layer = caffe_net.Layer_param(name=name, type='ReLU',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return x
def _prelu(raw, input, weight):# for threshold or prelux = raw(input, weight)bottom_blobs=[log.blobs(input)]name = log.add_layer(name='prelu')log.add_blobs([x], name='prelu_blob')layer = caffe_net.Layer_param(name=name, type='PReLU',bottom=bottom_blobs, top=[log.blobs(x)])if weight.size()[0]==1:layer.param.prelu_param.channel_shared=Truelayer.add_data(weight.cpu().data.numpy()[0])else:layer.add_data(weight.cpu().data.numpy())log.cnet.add_layer(layer)return xdef _leaky_relu(raw, input, negative_slope=0.01, inplace=False):x = raw(input, negative_slope)name = log.add_layer(name='leaky_relu')log.add_blobs([x], name='leaky_relu_blob')layer = caffe_net.Layer_param(name=name, type='ReLU',bottom=[log.blobs(input)], top=[log.blobs(x)])layer.param.relu_param.negative_slope=negative_slopelog.cnet.add_layer(layer)return xdef _tanh(raw, input):# for tanh activationx = raw(input)name = log.add_layer(name='tanh')log.add_blobs([x], name='tanh_blob')layer = caffe_net.Layer_param(name=name, type='TanH',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return xdef _softmax(raw, input, dim=None, _stacklevel=3):# for F.softmaxx=raw(input, dim=dim)if dim is None:dim=F._get_softmax_dim('softmax', input.dim(), _stacklevel)bottom_blobs=[log.blobs(input)]name = log.add_layer(name='softmax')log.add_blobs([x], name='softmax_blob')layer = caffe_net.Layer_param(name=name, type='Softmax',bottom=bottom_blobs, top=[log.blobs(x)])layer.param.softmax_param.axis=dimlog.cnet.add_layer(layer)return xdef _batch_norm(raw,input, running_mean, running_var, weight=None, bias=None,training=False, momentum=0.1, eps=1e-5):# because the runing_mean and runing_var will be changed after the _batch_norm operation, we first save the parametersx = raw(input, running_mean, running_var, weight, bias,training, momentum, eps)bottom_blobs = [log.blobs(input)]layer_name1 = log.add_layer(name='batch_norm')top_blobs = log.add_blobs([x], name='batch_norm_blob')layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm',bottom=bottom_blobs, top=top_blobs)if running_mean is None or running_var is None:# not use global_stats, normalization is performed over the current mini-batchlayer1.batch_norm_param(use_global_stats=0,eps=eps)else:layer1.batch_norm_param(use_global_stats=1, eps=eps)running_mean_clone = running_mean.clone()running_var_clone = running_var.clone()layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0]))log.cnet.add_layer(layer1)if weight is not None and bias is not None:layer_name2 = log.add_layer(name='bn_scale')layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale',bottom=top_blobs, top=top_blobs)layer2.param.scale_param.bias_term = Truelayer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy())log.cnet.add_layer(layer2)return xdef _instance_norm(raw, input, running_mean=None, running_var=None, weight=None,bias=None, use_input_stats=True, momentum=0.1, eps=1e-5):# TODO: the batch size!=1 view operationsprint("WARNING: The Instance Normalization transfers to Caffe using BatchNorm, so the batch size should be 1")if running_var is not None or weight is not None:# TODO: the affine=True or track_running_stats=True caseraise NotImplementedError("not implement the affine=True or track_running_stats=True case InstanceNorm")x= torch.batch_norm(input, weight, bias, running_mean, running_var,use_input_stats, momentum, eps,torch.backends.cudnn.enabled)bottom_blobs = [log.blobs(input)]layer_name1 = log.add_layer(name='instance_norm')top_blobs = log.add_blobs([x], name='instance_norm_blob')layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm',bottom=bottom_blobs, top=top_blobs)if running_mean is None or running_var is None:# not use global_stats, normalization is performed over the current mini-batchlayer1.batch_norm_param(use_global_stats=0,eps=eps)running_mean=torch.zeros(input.size()[1])running_var=torch.ones(input.size()[1])else:layer1.batch_norm_param(use_global_stats=1, eps=eps)running_mean_clone = running_mean.clone()running_var_clone = running_var.clone()layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0]))log.cnet.add_layer(layer1)if weight is not None and bias is not None:layer_name2 = log.add_layer(name='bn_scale')layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale',bottom=top_blobs, top=top_blobs)layer2.param.scale_param.bias_term = Truelayer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy())log.cnet.add_layer(layer2)return x#upsample layer
def _interpolate(raw, input,size=None, scale_factor=None, mode='nearest', align_corners=None):# 定义的参数包括 scale,即输出与输入的尺寸比例,如 2;scale_h、scale_w,# 同 scale,分别为 h、w 方向上的尺寸比例;pad_out_h、pad_out_w,仅在 scale 为 2 时# 有用,对输出进行额外 padding 在 h、w 方向上的数值;upsample_h、upsample_w,输# 出图像尺寸的数值。在 Upsample 的相关代码中,推荐仅仅使用 upsample_h、# upsample_w 准确定义 Upsample 层的输出尺寸,其他所有的参数都不推荐继续使用。# for nearest _interpolateif mode != "nearest" or align_corners != None:raise NotImplementedError("not implement F.interpolate totoaly")x = raw(input,size , scale_factor ,mode)layer_name = log.add_layer(name='upsample')top_blobs = log.add_blobs([x], name='upsample_blob'.format(type))layer = caffe_net.Layer_param(name=layer_name, type='Upsample',bottom=[log.blobs(input)], top=top_blobs)layer.upsample_param(size =(input.size(2),input.size(3)), scale_factor= scale_factor)log.cnet.add_layer(layer)return x#sigmid layer
def _sigmoid(raw, input):# Applies the element-wise function:# # Sigmoid(x)= 1/(1+exp(−x))# # x = raw(input)name = log.add_layer(name='sigmoid')log.add_blobs([x], name='sigmoid_blob')layer = caffe_net.Layer_param(name=name, type='Sigmoid',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return x#tanh layer
def _tanh(raw, input):# Applies the element-wise function:# # torch.nn.Tanh# # x = raw(input)name = log.add_layer(name='tanh')log.add_blobs([x], name='tanh_blob')layer = caffe_net.Layer_param(name=name, type='TanH',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return xdef _hardtanh(raw, input, min_val, max_val, inplace):# Applies the element-wise function:## torch.nn.ReLu6## print('relu6: ', log.blobs(input))x = raw(input, min_val, max_val)name = log.add_layer(name='relu6')log.add_blobs([x], name='relu6_blob')layer = caffe_net.Layer_param(name=name, type='ReLU6',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return x#L2Norm layer
def _l2Norm(raw, input, weight, eps):# Applies the element-wise function:## L2Norm in vgg_ssd## x = raw(input, weight, eps)name = log.add_layer(name='normalize')log.add_blobs([x], name='normalize_blob')layer = caffe_net.Layer_param(name=name, type='Normalize',bottom=[log.blobs(input)], top=[log.blobs(x)])layer.norm_param(eps)layer.add_data(weight.cpu().data.numpy())log.cnet.add_layer(layer)return xdef _div(raw,inputs, inputs2):x=raw(inputs, inputs2)log.add_blobs([x],name='div_blob')return x# ----- for Variable operations --------def _view(input, *args):x=raw_view(input, *args)if not NET_INITTED:return xlayer_name=log.add_layer(name='view')top_blobs=log.add_blobs([x],name='view_blob')layer=caffe_net.Layer_param(name=layer_name,type='Reshape',bottom=[log.blobs(input)],top=top_blobs)# TODO: reshpae added to nn_tools layerdims=list(args)dims[0]=0 # the first dim should be batch_sizelayer.param.reshape_param.shape.CopyFrom(caffe_net.pb.BlobShape(dim=dims))log.cnet.add_layer(layer)return xdef _mean(input, *args,**kwargs):x=raw_mean(input, *args,**kwargs)if not NET_INITTED:return xlayer_name=log.add_layer(name='mean')top_blobs=log.add_blobs([x],name='mean_blob')layer=caffe_net.Layer_param(name=layer_name,type='Reduction',bottom=[log.blobs(input)],top=top_blobs)if len(args)==1:dim=args[0]elif 'dim' in kwargs:dim=kwargs['dim']else:raise NotImplementedError('mean operation must specify a dim')layer.param.reduction_param.operation=4layer.param.reduction_param.axis=dimlog.cnet.add_layer(layer)return xdef _add(input, *args):x = raw__add__(input, *args)if not NET_INITTED:return xlayer_name = log.add_layer(name='add')top_blobs = log.add_blobs([x], name='add_blob')if log.blobs(args[0]) == None:log.add_blobs([args[0]], name='extra_blob')else:layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 1 # sum is 1log.cnet.add_layer(layer)return xdef _iadd(input, *args):x = raw__iadd__(input, *args)if not NET_INITTED:return xx=x.clone()layer_name = log.add_layer(name='add')top_blobs = log.add_blobs([x], name='add_blob')layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 1 # sum is 1log.cnet.add_layer(layer)return xdef _sub(input, *args):x = raw__sub__(input, *args)if not NET_INITTED:return xlayer_name = log.add_layer(name='sub')top_blobs = log.add_blobs([x], name='sub_blob')layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 1 # sum is 1layer.param.eltwise_param.coeff.extend([1.,-1.])log.cnet.add_layer(layer)return xdef _isub(input, *args):x = raw__isub__(input, *args)if not NET_INITTED:return xx=x.clone()layer_name = log.add_layer(name='sub')top_blobs = log.add_blobs([x], name='sub_blob')layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input),log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 1 # sum is 1log.cnet.add_layer(layer)return xdef _mul(input, *args):x = raw__mul__(input, *args)if not NET_INITTED:return xlayer_name = log.add_layer(name='mul')top_blobs = log.add_blobs([x], name='mul_blob')layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input), log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 0 # product is 1log.cnet.add_layer(layer)return xdef _imul(input, *args):x = raw__imul__(input, *args)if not NET_INITTED:return xx = x.clone()layer_name = log.add_layer(name='mul')top_blobs = log.add_blobs([x], name='mul_blob')layer = caffe_net.Layer_param(name=layer_name, type='Eltwise',bottom=[log.blobs(input), log.blobs(args[0])], top=top_blobs)layer.param.eltwise_param.operation = 0 # product is 1layer.param.eltwise_param.coeff.extend([1., -1.])log.cnet.add_layer(layer)return x#Permute layer
def _permute(input, *args):x = raw__permute__(input, *args)name = log.add_layer(name='permute')log.add_blobs([x], name='permute_blob')layer = caffe_net.Layer_param(name=name, type='Permute',bottom=[log.blobs(input)], top=[log.blobs(x)])order1 = args[0]order2 = args[1]order3 = args[2]order4 = args[3]layer.permute_param(order1, order2, order3, order4)log.cnet.add_layer(layer)return x#contiguous
def _contiguous(input, *args):x = raw__contiguous__(input, *args)name = log.add_layer(name='contiguous')log.add_blobs([x], name='contiguous_blob')layer = caffe_net.Layer_param(name=name, type='NeedRemove',bottom=[log.blobs(input)], top=[log.blobs(x)])log.cnet.add_layer(layer)return x#pow
def _pow(input, *args):x = raw__pow__(input, *args)log.add_blobs([x], name='pow_blob')return x#sum
def _sum(input, *args):x = raw__sum__(input, *args)log.add_blobs([x], name='sum_blob')return x# sqrt
def _sqrt(input, *args):x = raw__sqrt__(input, *args)log.add_blobs([x], name='sqrt_blob')return x# unsqueeze
def _unsqueeze(input, *args):x = raw__unsqueeze__(input, *args)log.add_blobs([x], name='unsqueeze_blob')return xdef _expand_as(input, *args):# only support expand A(1, 1, H, W) to B(1, C, H, W)x = raw__expand_as__(input, *args)layer_name = log.add_layer(name="expand_as", with_num=True)log.add_blobs([x], name='expand_as_blob')layer = caffe_net.Layer_param(name=layer_name, type='Convolution',bottom=[log.blobs(input)], top=[log.blobs(x)])def constant_weight(shape):weights = np.ones(shape, dtype='float32')return weightschannels = args[0].size(1)weight = constant_weight([channels, 1, 1, 1])layer.conv_param(channels, kernel_size = 1, bias_term=False, weight_filler_type='xavier')layer.add_data(weight)log.cnet.add_layer(layer)return x## 这里修改
def _flatten(raw , input, *args):x = raw(input, *args)if not NET_INITTED:return xlayer_name=log.add_layer(name='flatten')top_blobs=log.add_blobs([x],name='flatten_blob')layer=caffe_net.Layer_param(name=layer_name,type='Reshape',bottom=[log.blobs(input)],top=top_blobs)start_dim = args[0]end_dim = len(x.shape)if len(args) > 1:end_dim = args[1]dims = []for i in range(start_dim):dims.append(x.shape[i])cum = 1for i in range(start_dim, end_dim):cum = cum * x.shape[i]dims.append(cum)if end_dim != len(x.shape):cum = 1for i in range(end_dim, len(x.shape)):cum = cum * x.shape[i]dims.append(cum)layer.param.reshape_param.shape.CopyFrom(caffe_net.pb.BlobShape(dim=dims))log.cnet.add_layer(layer)return xclass Rp(object):def __init__(self,raw,replace,**kwargs):# replace the raw function to replace functionself.obj=replaceself.raw=rawdef __call__(self,*args,**kwargs):if not NET_INITTED:return self.raw(*args,**kwargs)for stack in traceback.walk_stack(None):if 'self' in stack[0].f_locals:layer=stack[0].f_locals['self']if layer in layer_names:log.pytorch_layer_name=layer_names[layer]print(layer_names[layer])breakout=self.obj(self.raw,*args,**kwargs)# if isinstance(out,Variable):# out=[out]return outF.conv2d=Rp(F.conv2d,_conv2d)
F.linear=Rp(F.linear,_linear)
F.relu=Rp(F.relu,_relu)
F.leaky_relu=Rp(F.leaky_relu,_leaky_relu)
F.max_pool2d=Rp(F.max_pool2d,_max_pool2d)
F.avg_pool2d=Rp(F.avg_pool2d,_avg_pool2d)
F.adaptive_avg_pool2d = Rp(F.adaptive_avg_pool2d,_adaptive_avg_pool2d)
F.dropout=Rp(F.dropout,_dropout)
F.threshold=Rp(F.threshold,_threshold)
F.prelu=Rp(F.prelu,_prelu)
F.batch_norm=Rp(F.batch_norm,_batch_norm)
F.instance_norm=Rp(F.instance_norm,_instance_norm)
F.softmax=Rp(F.softmax,_softmax)
F.conv_transpose2d=Rp(F.conv_transpose2d,_conv_transpose2d)
F.interpolate = Rp(F.interpolate,_interpolate)
F.sigmoid = Rp(F.sigmoid,_sigmoid)
F.tanh = Rp(F.tanh,_tanh)
F.tanh = Rp(F.tanh,_tanh)
F.hardtanh = Rp(F.hardtanh,_hardtanh)
# F.l2norm = Rp(F.l2norm,_l2Norm)torch.split=Rp(torch.split,_split)
torch.max=Rp(torch.max,_max)
torch.cat=Rp(torch.cat,_cat)
torch.div=Rp(torch.div,_div)
## 这里也需要修改
torch.flatten = Rp(torch.flatten,_flatten)# TODO: other types of the view function
try:raw_view=Variable.viewVariable.view=_viewraw_mean=Variable.meanVariable.mean=_meanraw__add__=Variable.__add__Variable.__add__=_addraw__iadd__=Variable.__iadd__Variable.__iadd__=_iaddraw__sub__=Variable.__sub__Variable.__sub__=_subraw__isub__=Variable.__isub__Variable.__isub__=_isubraw__mul__ = Variable.__mul__Variable.__mul__ = _mulraw__imul__ = Variable.__imul__Variable.__imul__ = _imul
except:# for new version 0.4.0 and later versionfor t in [torch.Tensor]:raw_view = t.viewt.view = _viewraw_mean = t.meant.mean = _meanraw__add__ = t.__add__t.__add__ = _addraw__iadd__ = t.__iadd__t.__iadd__ = _iaddraw__sub__ = t.__sub__t.__sub__ = _subraw__isub__ = t.__isub__t.__isub__ = _isubraw__mul__ = t.__mul__t.__mul__=_mulraw__imul__ = t.__imul__t.__imul__ = _imulraw__permute__ = t.permutet.permute = _permuteraw__contiguous__ = t.contiguoust.contiguous = _contiguousraw__pow__ = t.powt.pow = _powraw__sum__ = t.sumt.sum = _sumraw__sqrt__ = t.sqrtt.sqrt = _sqrtraw__unsqueeze__ = t.unsqueezet.unsqueeze = _unsqueezeraw__expand_as__ = t.expand_ast.expand_as = _expand_asdef trans_net(net, input_var, name='TransferedPytorchModel'):print('Starting Transform, This will take a while')log.init([input_var])log.cnet.net.name=namelog.cnet.net.input.extend([log.blobs(input_var)])log.cnet.net.input_dim.extend(input_var.size())global NET_INITTEDNET_INITTED=Truefor name,layer in net.named_modules():layer_names[layer]=nameprint("torch ops name:", layer_names)out = net.forward(input_var)print('Transform Completed')def save_prototxt(save_name):log.cnet.remove_layer_by_type("NeedRemove")log.cnet.save_prototxt(save_name)def save_caffemodel(save_name):log.cnet.save(save_name)