**PyTorch月学习计划 - 第一周;第6-7天: 自动梯度(Autograd)**

PyTorch月学习计划 - 第6-7天: 自动梯度(Autograd)
学习目标:
掌握自动微分的基本原理,特别是在深度学习中的应用。
学会如何在PyTorch中使用autograd模块进行自动梯度计算。
学习内容:
自动微分和计算图的概念

自动微分:自动微分是深度学习中用于自动计算导数或梯度的技术。在神经网络训练中,它用于计算损失函数相对于模型参数的梯度。
计算图:计算图是表示数学表达式的图形方法,其中节点表示数学运算,边表示运算间的数据流。在PyTorch中,计算图用于追踪和计算梯度。

PyTorch中的Autograd

PyTorch的autograd模块自动处理张量的所有梯度计算。
通过设置requires_grad为True,PyTorch会追踪对于该张量的所有操作,并在进行反向传播时自动计算梯度。
代码示例:使用PyTorch的Autograd
import torch

创建一个张量,设置requires_grad=True来追踪其计算历史

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)

进行一些张量操作

y = x * 2
z = y.mean()

对z进行反向传播,自动计算梯度

z.backward()

查看x的梯度

print(x.grad) # 输出梯度值
在这个示例中,我们创建了一个需要计算梯度的张量x。接着,我们对x执行了一些操作,并通过调用z.backward()来触发反向传播。PyTorch自动计算了x的梯度并存储在x.grad属性中。

小结
在第6-7天的学习中,我们将深入了解自动微分的概念,并学会如何在PyTorch中利用autograd模块进行高效的梯度计算。这是理解和实现深度学习模型的关键环节,对于后续学习构建和训练神经网络至关重要。通过实践这些概念,你将能够更自信地探索更复杂的深度学习模型。

对比学习
TensorFlow中的自动微分

TensorFlow 2.x引入了Eager Execution,使得自动微分变得更加简单和直观。
使用tf.GradientTape上下文来追踪操作,从而计算梯度。

代码示例:
PyTorch Autograd
import torch
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x * 2
z = y.mean()
z.backward()
print(x.grad) # 输出梯度值

TensorFlow自动微分

import tensorflow as tf

x = tf.Variable([1.0, 2.0, 3.0])
with tf.GradientTape() as tape:
y = x * 2
z = tf.reduce_mean(y)
grad = tape.gradient(z, x)
print(grad) # 输出梯度值

对比学习:
概念:

PyTorch的autograd和TensorFlow的GradientTape都是为了实现自动梯度计算。
PyTorch更倾向于使用命令式编程风格,而TensorFlow(尤其是在2.x版本中)也采纳了这种风格。

使用方法:

在PyTorch中,你通过设置requires_grad=True来追踪对于张量的操作,并使用.backward()来计算梯度。
在TensorFlow中,tf.GradientTape上下文用于追踪执行的操作,tape.gradient()用于计算梯度。

灵活性和易用性:

PyTorch由于其动态图的特性,通常被认为在实验和调试时更为灵活和直观。
TensorFlow 2.x的Eager Execution大大增强了其灵活性和易用性,使其在动态图方面与PyTorch更为接近。

小结

在这两天的学习中,我们不仅要掌握PyTorch中的自动梯度计算,还要理解TensorFlow如何执行类似的操作。这种对比学习将帮助我们更好地理解这两个流行深度学习框架的相似之处和差异,为以后根据项目需求选择合适的框架打下坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/638783.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在达沃斯,人工智能引发的乐观情绪可谓一分为二

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

基于STM32的基础实验(一)

LED实验 采用STM32单片机设计电路,控制LED灯的亮灭,对单片机端口的位操作进行演示。 实验需要: STM32核心板独立LED 电路原理图 LED灯实际上是一个特殊的二极管,通过控制高低电平亮灭。如图所示,当1为低电平&#…

数据可视化 | 期末复习 | 补档

文章目录 📚介绍可视化🐇什么是可视化🐇科学可视化,信息可视化,可视分析系统三者之间有什么区别🔥🐇可视化的基本流程🐇可视化的两个基本设计原则🐇数据属性&#x1f407…

数学建模学习笔记||层次分析法

评价类问题 解决评价类问题首先需要想到一下三个问题 我们评价的目标是什么我们为了达到这个目标有哪几种可行方案评价的准则或者说指标是什么 对于以上三个问题,我们可以根据题目中的背景材料,常识以及网上收集到的参考资料进行结合,从而筛…

GEE:最小距离分类器(minimumDistance)分类教程(样本制作、特征添加、训练、精度、最优参数、统计面积)

作者:CSDN @ _养乐多_ 本文将介绍在Google Earth Engine (GEE)平台上进行最小距离分类(minimumDistance)的方法和代码,其中包括制作样本点教程(本地、在线和本地在线混合制作样本点,合并样本点等),加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),运行…

本地git切换地区后,无法使用ssh访问github 22端口解决方案

问题 由于放假回家,发现之前一直使用正常的git,与github无法通讯,pull和push都无法连接。报错如下: connect to host github.com port 22: Connection timed out fatal: Could not read from remote repository. 原因 可能是所…

算法题学习笔记-哈希

1 哈希 哈希是一种常见的算法。哈希表(Hash Table)也称为散列表,是一种数据结构,它使用哈希函数将键映射到数组的索引上,以便快速查找和插入数据。哈希表通常用于实现关联数组和集合,以实现高效的查找、插…

docker常用基础命令

文章目录 1、Docker 环境信息命令1.1、docker info1.2、docker version 2、系统日志信息常用命令2.1、docker events2.2、docker logs2.3、docker history 3、容器的生命周期管理命令3.1、docker create3.2、docker run 总结 1、Docker 环境信息命令 1.1、docker info 显示 D…

Linux 命令大全 CentOS常用运维命令

文章目录 1、Linux 目录结构2、解释目录3、命令详解3.1、shutdown命令3.1、文件目录管理命令ls 命令cd 命令pwd 命令tree 命令mkdir 命令touch 命令cat 命令cp 命令more 命令less 命令head 命令mv 命令rm 命令ln 命令tail 命令cut命令 3.2、用户管理useradd/userdel 命令用户的…

使用残差网络识别手写数字及MNIST 数据集介绍

MNIST 数据集已经是一个几乎每个初学者都会接触的数据集, 很多实验、很多模型都会以MNIST 数据集作为训练对象, 不过有些人可能对它还不是很了解, 那么今天我们一起来学习一下MNIST 数据集。 1.MNIST 介绍 MNIST 数据集来自美国国家标准与技术研究所, National Institute of S…

2. SpringBoot3 实战之用户模块接口开发

文章目录 开发模式和环境搭建开发模式环境搭建 1. 用户注册1.1 注册接口基本代码编写1.2 注册接口参数校验 2. 用户登录2.1 登录接口基本代码编写2.2 登录认证2.2.1 登录认证引入2.2.2 JWT 简介2.2.3 登录功能集成 JWT2.2.4 拦截器 3. 获取用户详细信息3.1 获取用户详细信息基本…

openEuler安装KVM

1、关闭防火墙和selinux [rootlocalhost ~]# systemctl stop firewalld[rootlocalhost ~]# setenforce 0 2、下载软件包 libvirt:用于管理虚拟化平台的开源的 API,后台程序和管理工具。 qemu:开源(模拟)软件&#…

【MySQL】InnoDB 什么情况下会产生死锁

🍎个人博客:个人主页 🏆个人专栏:数据库 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 结语 我的其他博客 前言 在数据库管理系统中,特别是使用 InnoDB 存储引擎的 MySQL 中,死锁是一个可能影响…

Win10下在Qt项目中配置SQlite3环境

资源下载 官网资源:SQLite Download Page 1、sqlite.h sqlite-amalgamation-3450000.zip (2.60 MiB) 2、sqlite3.def,sqlite3.dll sqlite-dll-win-x64-3450000.zip (1.25 MiB) 3、 win10下安装sqlite3所需要文件 sqlite-tools-win-x64-3450000.zipht…

java基础02-装箱和拆箱

装箱和拆箱 Java中的装箱和拆箱是指将基本数据类型和对应的包装类之间的转换过程。 1.装箱是将基本数据类型转换为对应的包装类类型的过程。 例如,将int类型转换为Integer类型。在Java中,可以使用自动装箱和强制装箱来实现装箱操作。自动装箱是编译器自…

SpringBoot工程Maven构建引用本地jar包依赖

目前大部分项目使用了SpringBoot,在项目实施过程中可能遇到没有搭建私有仓库,并且需要引入第三方提供的jar包(例如某些SDK)的情况。一般遇到以上情况可以将第三方提供的jar包通过以下命令安装到本地仓库,然后本地进行构…

万界星空科技MES系统的生产管理流程

对于生产型工厂来说,车间生产流程无疑是最重要的管理环节,繁琐的生产细节让企业很难找到合理的生产管理方法,导致人工效率低、错误多、成本高。如果想要解决这些问题,工厂就必须要有一套自己的生产管理系统,这样才能提…

【Leetcode】410. 分割数组的最大值

文章目录 题目思路1.max_element2.partial_sum3.upper_bound4.distance 代码运行结果 题目 题目链接 给定一个非负整数数组 nums 和一个整数 k ,你需要将这个数组分成 k 个非空的连续子数组。 设计一个算法使得这 k 个子数组各自和的最大值最小。 示例1&#xff1…

玩转 SpEL 表达式

本文概览 欢迎阅读本文,其中我们将深入探讨 Spring Expression Language(SpEL)的语法和实际应用。从基础概念到高级用法,我们将在本文中了解如何使用 SpEL 提高代码的灵活性和表达力。无论大家是初学者还是有经验的开发者&#x…

ACM题解Day2|1.台风, 2.式神考试,3.DNA,4.方程求解

学习目标: 博主介绍: 27dCnc 专题 : 数据结构帮助小白快速入门 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)…