架构篇05-复杂度来源:高可用

文章目录

    • 计算高可用
    • 存储高可用
    • 高可用状态决策
    • 小结

今天,我们聊聊复杂度的第二个来源高可用

参考维基百科,先来看看高可用的定义。

系统无中断地执行其功能的能力,代表系统的可用性程度,是进行系统设计时的准则之一。

这个定义的关键在于“无中断”,但恰好难点也在“无中断”上面,因为无论是单个硬件还是单个软件,都不可能做到无中断,硬件会出故障,软件会有 bug;硬件会逐渐老化,软件会越来越复杂和庞大……

除了硬件和软件本质上无法做到“无中断”,外部环境导致的不可用更加不可避免、不受控制。例如,断电、水灾、地震,这些事故或者灾难也会导致系统不可用,而且影响程度更加严重,更加难以预测和规避。

所以,系统的高可用方案五花八门,但万变不离其宗,本质上都是通过“冗余”来实现高可用。通俗点来讲,就是一台机器不够就两台,两台不够就四台;一个机房可能断电,那就部署两个机房;一条通道可能故障,那就用两条,两条不够那就用三条(移动、电信、联通一起上)。高可用的“冗余”解决方案,单纯从形式上来看,和之前讲的高性能是一样的,都是通过增加更多机器来达到目的,但其实本质上是有根本区别的:高性能增加机器目的在于“扩展”处理性能;高可用增加机器目的在于“冗余”处理单元

通过冗余增强了可用性,但同时也带来了复杂性,我会根据不同的应用场景逐一分析。

计算高可用

这里的“计算”指的是业务的逻辑处理。计算有一个特点就是无论在哪台机器上进行计算,同样的算法和输入数据,产出的结果都是一样的,所以将计算从一台机器迁移到另外一台机器,对业务并没有什么影响。既然如此,计算高可用的复杂度体现在哪里呢?最简单的单机变双机为例进行分析。先来看一个单机变双机的简单架构示意图。

img

你可能会发现,这个双机的架构图和上期“高性能”讲到的双机架构图是一样的,因此复杂度也是类似的,具体表现为:

  • 需要增加一个任务分配器,选择合适的任务分配器也是一件复杂的事情,需要综合考虑性能、成本、可维护性、可用性等各方面因素。
  • 任务分配器和真正的业务服务器之间有连接和交互,需要选择合适的连接方式,并且对连接进行管理。例如,连接建立、连接检测、连接中断后如何处理等。
  • 任务分配器需要增加分配算法。例如,常见的双机算法有主备、主主,主备方案又可以细分为冷备、温备、热备。

上面这个示意图只是简单的双机架构,我们再看一个复杂一点的高可用集群架构。

img

这个高可用集群相比双机来说,分配算法更加复杂,可以是 1 主 3 备、2 主 2 备、3 主 1 备、4 主 0 备,具体应该采用哪种方式,需要结合实际业务需求来分析和判断,并不存在某种算法就一定优于另外的算法。例如,ZooKeeper 采用的就是 1 主多备,而 Memcached 采用的就是全主 0 备。

存储高可用

对于需要存储数据的系统来说,整个系统的高可用设计关键点和难点就在于“存储高可用”。存储与计算相比,有一个本质上的区别:将数据从一台机器搬到到另一台机器,需要经过线路进行传输。线路传输的速度是毫秒级别,同一机房内部能够做到几毫秒;分布在不同地方的机房,传输耗时需要几十甚至上百毫秒。例如,从广州机房到北京机房,稳定情况下 ping 延时大约是 50ms,不稳定情况下可能达到 1s 甚至更多。

虽然毫秒对于人来说几乎没有什么感觉,但是对于高可用系统来说,就是本质上的不同,这意味着整个系统在某个时间点上,数据肯定是不一致的。按照“数据 + 逻辑 = 业务”这个公式来套的话,数据不一致,即使逻辑一致,最后的业务表现就不一样了。以最经典的银行储蓄业务为例,假设用户的数据存在北京机房,用户存入了 1 万块钱,然后他查询的时候被路由到了上海机房,北京机房的数据没有同步到上海机房,用户会发现他的余额并没有增加 1 万块。想象一下,此时用户肯定会背后一凉,马上会怀疑自己的钱被盗了,然后赶紧打客服电话投诉,甚至打 110 报警,即使最后发现只是因为传输延迟导致的问题,站在用户的角度来说,这个过程的体验肯定很不好。

img

除了物理上的传输速度限制,传输线路本身也存在可用性问题,传输线路可能中断、可能拥塞、可能异常(错包、丢包),并且传输线路的故障时间一般都特别长,短的十几分钟,长的几个小时都是可能的。例如,2015 年支付宝因为光缆被挖断,业务影响超过 4 个小时;2016 年中美海底光缆中断 3 小时等。在传输线路中断的情况下,就意味着存储无法进行同步,在这段时间内整个系统的数据是不一致的。

综合分析,无论是正常情况下的传输延迟,还是异常情况下的传输中断,都会导致系统的数据在某个时间点或者时间段是不一致的,而数据的不一致又会导致业务问题;但如果完全不做冗余,系统的整体高可用又无法保证,所以存储高可用的难点不在于如何备份数据,而在于如何减少或者规避数据不一致对业务造成的影响

分布式领域里面有一个著名的 CAP 定理,从理论上论证了存储高可用的复杂度。也就是说,存储高可用不可能同时满足“一致性、可用性、分区容错性”,最多满足其中两个,这就要求我们在做架构设计时结合业务进行取舍。

高可用状态决策

无论是计算高可用还是存储高可用,其基础都是“状态决策”,即系统需要能够判断当前的状态是正常还是异常,如果出现了异常就要采取行动来保证高可用。如果状态决策本身都是有错误或者有偏差的,那么后续的任何行动和处理无论多么完美也都没有意义和价值。但在具体实践的过程中,恰好存在一个本质的矛盾:通过冗余来实现的高可用系统,状态决策本质上就不可能做到完全正确。下面我基于几种常见的决策方式进行详细分析。

  1. 独裁式

独裁式决策指的是存在一个独立的决策主体,我们姑且称它为“决策者”,负责收集信息然后进行决策;所有冗余的个体,我们姑且称它为“上报者”,都将状态信息发送给决策者。

img

独裁式的决策方式不会出现决策混乱的问题,因为只有一个决策者,但问题也正是在于只有一个决策者。当决策者本身故障时,整个系统就无法实现准确的状态决策。如果决策者本身又做一套状态决策,那就陷入一个递归的死循环了。

  1. 协商式

协商式决策指的是两个独立的个体通过交流信息,然后根据规则进行决策,最常用的协商式决策就是主备决策

img

这个架构的基本协商规则可以设计成:

  • 2 台服务器启动时都是备机。
  • 2 台服务器建立连接。
  • 2 台服务器交换状态信息。
  • 某 1 台服务器做出决策,成为主机;另一台服务器继续保持备机身份。

协商式决策的架构不复杂,规则也不复杂,其难点在于,如果两者的信息交换出现问题(比如主备连接中断),此时状态决策应该怎么做。

  • 如果备机在连接中断的情况下认为主机故障,那么备机需要升级为主机,但实际上此时主机并没有故障,那么系统就出现了两个主机,这与设计初衷(1 主 1 备)是不符合的。

img

  • 如果备机在连接中断的情况下不认为主机故障,则此时如果主机真的发生故障,那么系统就没有主机了,这同样与设计初衷(1 主 1 备)是不符合的。

img

  • 如果为了规避连接中断对状态决策带来的影响,可以增加更多的连接。例如,双连接、三连接。这样虽然能够降低连接中断对状态带来的影响(注意:只能降低,不能彻底解决),但同时又引入了这几条连接之间信息取舍的问题,即如果不同连接传递的信息不同,应该以哪个连接为准?实际上这也是一个无解的答案,无论以哪个连接为准,在特定场景下都可能存在问题。

img

综合分析,协商式状态决策在某些场景总是存在一些问题的。

  1. 民主式

民主式决策指的是多个独立的个体通过投票的方式来进行状态决策。例如,ZooKeeper 集群在选举 leader 时就是采用这种方式。

img

民主式决策和协商式决策比较类似,其基础都是独立的个体之间交换信息,每个个体做出自己的决策,然后按照“多数取胜”的规则来确定最终的状态。不同点在于民主式决策比协商式决策要复杂得多,ZooKeeper 的选举算法 Paxos,绝大部分人都看得云里雾里,更不用说用代码来实现这套算法了。

除了算法复杂,民主式决策还有一个固有的缺陷:脑裂。这个词来源于医学,指人体左右大脑半球的连接被切断后,左右脑因为无法交换信息,导致各自做出决策,然后身体受到两个大脑分别控制,会做出各种奇怪的动作。例如:当一个脑裂患者更衣时,他有时会一只手将裤子拉起,另一只手却将裤子往下脱。脑裂的根本原因是,原来统一的集群因为连接中断,造成了两个独立分隔的子集群,每个子集群单独进行选举,于是选出了 2 个主机,相当于人体有两个大脑了。

img

从图中可以看到,正常状态的时候,节点 5 作为主节点,其他节点作为备节点;当连接发生故障时,节点 1、节点 2、节点 3 形成了一个子集群,节点 4、节点 5 形成了另外一个子集群,这两个子集群的连接已经中断,无法进行信息交换。按照民主决策的规则和算法,两个子集群分别选出了节点 2 和节点 5 作为主节点,此时整个系统就出现了两个主节点。这个状态违背了系统设计的初衷,两个主节点会各自做出自己的决策,整个系统的状态就混乱了。

为了解决脑裂问题,民主式决策的系统一般都采用“投票节点数必须超过系统总节点数一半”规则来处理。如图中那种情况,节点 4 和节点 5 形成的子集群总节点数只有 2 个,没有达到总节点数 5 个的一半,因此这个子集群不会进行选举。这种方式虽然解决了脑裂问题,但同时降低了系统整体的可用性,即如果系统不是因为脑裂问题导致投票节点数过少,而真的是因为节点故障(例如,节点 1、节点 2、节点 3 真的发生了故障),此时系统也不会选出主节点,整个系统就相当于宕机了,尽管此时还有节点 4 和节点 5 是正常的。

综合分析,无论采取什么样的方案,状态决策都不可能做到任何场景下都没有问题,但完全不做高可用方案又会产生更大的问题,如何选取适合系统的高可用方案,也是一个复杂的分析、判断和选择的过程。

小结

今天我们聊了复杂度来源之一的高可用,分析了计算高可用和存储高可用两个场景,给出了几种高可用状态决策方式,希望对你有所帮助。


【星猿杂谈】:在这里我们共同探索科技新趋势,分享积累的点滴,从编程语言到系统架构,从人工智能到高性能计算,我们追求技术的进步,同时珍视分享的力量。欢迎关注我们,在技术的精彩世界中一起遨游,发现更多未知!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/637309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速入门:使用 Gemini Embeddings 和 Elasticsearch 进行向量搜索

Gemini 是 Google DeepMind 开发的多模态大语言模型家族,作为 LaMDA 和 PaLM 2 的后继者。由 Gemini Ultra、Gemini Pro 和 Gemini Nano 组成,于 2023 年 12 月 6 日发布,定位为 OpenAI 的竞争者 GPT-4。 本教程演示如何使用 Gemini API 创建…

【代码整理】基于COCO格式的pytorch Dataset类实现

import模块 import numpy as np import torch from functools import partial from PIL import Image from torch.utils.data.dataset import Dataset from torch.utils.data import DataLoader import random import albumentations as A from pycocotools.coco import COCO …

java SSM园林绿化管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM园林绿化管理系统是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的源代 码和数据库,系统主要采…

网易真的大规模裁员吗?

关注卢松松,会经常给你分享一些我的经验和观点。 以前互联网公司裁员,大家不紧张,因为容易找工作,而现在不知道怎么回事,只要以提高某某公司裁员,这就能迅速登上热榜。 这不,最近网传网易裁员1…

Linux的IO文件操作和文件系统

前要:本次我想给您带来关于 IO 和文件的知识,而文件在本系列中分为内存上的文件和磁盘上的文件。 1.文件概念 1.1.文件读写 在谈及系统接口之前,我们先来从 C 语言的角度来谈及一些前要知识,以辅助我们后续来理解系统 IO。 我们…

大数据导论(3)---大数据技术

文章目录 1. 大数据技术概述2. 数据采集与预处理2.1 数据采集2.2 预处理 3. 数据存储和管理3.1 分布式基础架构Hadoop3.2 分布式文件系统HDFS3.3 分布式数据库HBase3.4 非关系型数据库NoSQL 4. 数据可视化与保护 1. 大数据技术概述 大数据技术主要包括数据采集与预处理、数据存…

关于常见分布式组件高可用设计原理的理解和思考

文章目录 1. 数据存储场景和存储策略1.1 镜像模式-小规模数据1.2 分片模式-大规模数据 2. 数据一致性和高可用问题2.1 镜像模式如何保证数据一致性2.2 镜像模式如何保证数据高可用2.2.1 HA模式2.2.2 分布式选主模式 2.3 分片模式如何数据一致性和高可用 3. 大规模数据集群的架构…

32 登录页组件

效果演示 实现了一个登录页面的样式,包括一个容器、左侧和右侧部分。左侧部分是一个背景图片,右侧部分是一个表单,包括输入框、复选框、按钮和忘记密码链接。整个页面的背景色为白色,容器为一个圆角矩形,表单为一个半透…

linux C语言socket函数send

在Linux中,使用C语言进行网络编程时,send函数是用于发送数据到已连接的套接字的重要函数之一。它通常用于TCP连接,但也可以用于UDP(尽管对于UDP,通常更推荐使用sendto,因为它允许你指定目标地址和端口&…

【linux驱动】用户空间程序与内核模块交互-- IOCTL和Netlink

创建自定义的IOCTL(输入/输出控制)或Netlink命令以便用户空间程序与内核模块交互涉及几个步骤。这里将分别介绍这两种方法。 一、IOCTL 方法 1. 定义IOCTL命令 在内核模块中,需要使用宏定义你的IOCTL命令。通常情况下,IOCTL命令…

Rancher部署k8s集群测试安装nginx(节点重新初始化方法,亲测)

目录 一、安装前准备工作计算机升级linux内核时间同步Hostname设置hosts设置关闭防火墙,selinux关闭swap安装docker 二、安装rancher部署rancher 三、安装k8s安装k8s集群易错点,重新初始化 四、安装kutectl五、测试安装nginx工作负载 一、安装前准备工作…

SD-WAN企业组网场景深度解析

在当前快速发展的企业网络环境中,SD-WAN技术不仅仅是实现企业站点之间网络互通的关键,更是满足不同站点对因特网、SaaS云应用、公有云等多种企业应用和业务访问的理想选择。从企业的WAN业务需求出发,我们可以对SD-WAN的组网场景进行深度解析&…

VIM工程的编译 / VI的快捷键记录

文章目录 VIM工程的编译 / VI的快捷键记录概述笔记工程的编译工程的编译 - 命令行vim工程的编译 - GUI版vim备注VIM的帮助文件位置VIM官方教程vim 常用快捷键启动vi时, 指定要编辑哪个文件正常模式光标的移动退出不保存 退出保存只保存不退出另存到指定文件移动到行首移动到行尾…

替代堆叠的新技术M-lag

M-lag:跨设备链路聚合组,是一种实现跨设备链路聚合的机制。将一台设备与另外两台设备进行跨设备链路聚合,从而把链路的可靠性从单板级提升到设备级,组成双活系统。 基本概念: peer-link链路:是一条聚合链…

[C#]winform部署官方yolov8-rtdetr目标检测的onnx模型

【官方框架地址】 https://github.com/ultralytics/ultralytics 【算法介绍】 RTDETR,全称“Real-Time Detection with Transformer for Object Tracking and Detection”,是一种基于Transformer结构的实时目标检测和跟踪算法。它在目标检测和跟踪领域…

力扣刷MySQL-第五弹(详细讲解)

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:力扣刷题讲解-MySQL 🍹文章作者技术和水平很有限,如果文中出…

Java 面向对象02 封装 (黑马)

人画圆:画圆这个方法应该定义在园这个类里面。 人关门:是人给了门一个作用力,然后门自己关上了门,所以关门的方法是在门的类里面 封装对象的好处: 调用Java自带的方法举例实现: 在测试类中,对其…

电脑pdf如何转换成word格式?用它实现pdf文件一键转换

pdf转word格式可以用于提取和重用pdf文档中的内容,有时候,我们可能需要引用或引用pdf文档中的一些段落、表格或数据,通过将pdf转换为可编辑的Word文档,可以轻松地复制和粘贴所需内容,节省我们的时间,那么如…

Element-UI 多个el-upload组件自定义上传,不用上传url,并且携带自定义传参(文件序号)

1. 需求: 有多个(不确定具体数量)的upload组件,每个都需要单独上传获取文件(JS File类型),不需要action上传到指定url,自定义上传动作和http操作。而且因为不确定组件数量&#xff0…

Oracle 经典练习题 50 题

文章目录 一 CreateTable二 练习题1 查询"01"课程比"02"课程成绩高的学生的信息及课程分数2 查询"01"课程比"02"课程成绩低的学生的信息及课程分数3 查询平均成绩大于等于60分的同学的学生编号和学生姓名和平均成绩4 查询平均成绩小于…