Opencv-C++笔记 (18) : 轮廓和凸包

文章目录

  • 一、轮廓
    • findContours发现轮廓
    • drawContours绘制轮廓
    • 代码
  • 二.几何及特性概括——凸包(Convex Hull)
    • 凸包概念
    • 凸包扫描算法介绍——Graham扫描算法
  • 相关API介绍
  • 程序示例
  • 轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形
    • 相关理论介绍
    • 轮廓周围绘制矩形 -API
    • 绘制步骤
    • 程序实例
  • 四.图像矩(Image Moments)
    • 1、相关理论
    • 2、API介绍
    • 计算轮廓面积cv::contourArea
    • .计算轮廓长度cv::arcLength
    • 例程
  • 五、多边形测试
  • 1.相关理论
    • 2.相关API介绍
    • 程序示例

一、轮廓

轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果

轮廓查找步骤:

  • 输入图像转为灰度图像cvtColor
  • 使用Canny进行边缘提取或者threshold阈值操作,得到二值图像
  • 使用findContours寻找轮廓
  • 使用drawContours绘制轮廓

findContours发现轮廓

在二值图像上发现轮廓使用

cv::findContours(
InputOutputArray binImg,     输入图像,非0的像素被看成1,0的像素值保持不变,8-bit
OutputArrayOfArrays contours,  全部发现的轮廓对象
OutputArray, hierachy      图该的拓扑结构 std::vector<cv::Vec4i>,可选,该轮廓发现算法正是基于图像拓扑结构实现。它的元素与轮廓的数量一样多。对于每个第 i 个轮廓轮廓[i],元素hierarchy[i][0]、hierarchy[i][1]
int mode,            轮廓返回的模式
int method,            发现方法
Point offset=Point()       轮廓像素的位移,默认(0, 0)没有位移
)

drawContours绘制轮廓

在二值图像上发现轮廓cv::findContours之后对发现的轮廓数据进行绘制显示

drawContours(
InputOutputArray binImg,      输出图像
OutputArrayOfArrays contours,    全部发现的轮廓对象
Int contourIdx            轮廓索引号
const Scalar & color,        绘制颜色
int thickness,/           绘制线宽
int lineType ,             线的类型LINE_8
InputArray hierarchy,        拓扑结构图
int maxlevel,           最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓
Point offset=Point()        轮廓位移,可选

代码

//轮廓发现:通过cv::fingContoursAPI查找轮廓,通过cv::drawContours绘制轮廓
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>using namespace cv;
using namespace std;int threshold_value = 100;
int threshold_max = 255;
RNG rng;
const char* output_win = "Demo_Contour";
void Demo_Contours(int, void*);
Mat src,dst;
int main(int argc, char** argv) {src = imread("D:/photos/45.png");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow("input image", CV_WINDOW_AUTOSIZE);namedWindow(output_win, CV_WINDOW_AUTOSIZE);imshow("input image", src);cvtColor(src, src, CV_BGR2GRAY);//灰度化图像,为Canny边缘检测做准备const char* trackbar_title = "threshold_value";createTrackbar(trackbar_title, output_win, &threshold_value, threshold_max, Demo_Contours);//动态调整Canny边缘检测的阈值Demo_Contours(0, 0);//使程序刚开始就有结果,与createTrackbar无关waitKey(0);return 0;
}void Demo_Contours(int, void*) {Mat canny_output;vector<vector<Point>> contours;vector<Vec4i> hierachy;Canny(src, canny_output, threshold_value, threshold_value * 2, 3, false);//Canny边缘检测,3代表算子尺寸imshow("canny image", canny_output);findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));//contours储存轮廓的点集,轮廓提取方式为RETR_TREE,轮廓表达为:CHAIN_APPROX_SIMPLEdst = Mat::zeros(src.size(), CV_8UC3);RNG rng(12345);for (size_t i = 0; i < contours.size(); i++) {//逐条绘制轮廓Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));}imshow(output_win, dst);}

在这里插入图片描述

二.几何及特性概括——凸包(Convex Hull)

凸包概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。
**正式定义:**包含点集合S中所有点的最小凸多边形称为凸包

凸包扫描算法介绍——Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0。
  • 从p0开始极坐标扫描,依次添加p1….pn(排序顺序是根据极坐标的角度大小,逆时针方向)。
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,
    反之如果导致一个右转向(顺时针方向)删除该点从凸包中。
    在这里插入图片描述

相关API介绍

convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是			vector<Point>则自动忽略
}

凸包逼近实现步骤:

  • 首先把图像从RGB转为灰度。

  • 然后再转为二值图像。

  • 在通过发现轮廓得到候选点。

  • 凸包API调用。

  • 绘制显示。

程序示例

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>using namespace cv;
using namespace std;int threshold_value = 100;
int threshold_max = 255;
RNG rng(12345);
const char* output_win = "Demo_convex hull";
void threshold_callback(int, void*);
Mat src, dst,dst2,gray_src;
int main(int argc, char** argv) {src = imread("D:/photos/45.png");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow("input image", CV_WINDOW_AUTOSIZE);namedWindow(output_win, CV_WINDOW_AUTOSIZE);const char* trackbar_label = "threshold:";imshow("input image", src);cvtColor(src, gray_src, CV_BGR2GRAY);blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);//均值模糊进行降噪处理imshow("src_gray", gray_src);createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, threshold_callback);threshold_callback(0, 0);waitKey(0);return 0;
}
void threshold_callback(int, void*) {Mat bin_output;vector<vector<Point>> contours;vector<Vec4i> hierachy;threshold(gray_src, bin_output, threshold_value, threshold_max, THRESH_BINARY);findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));vector<vector<Point>> convexs(contours.size());dst = Mat::zeros(src.size(), CV_8UC3);dst2 = Mat::zeros(src.size(), CV_8UC3);for (size_t i = 0; i < contours.size(); i++) {Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));convexHull(contours[i], convexs[i], false, true);//drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));}vector<Vec4i> empty(0);for (size_t k = 0; k < contours.size(); k++) {Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));drawContours(dst2, contours, k, color, 2, LINE_8, hierachy,1, Point(0, 0));drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0));//注意此时hieracgy选项填Mat()}imshow(output_win, dst);imshow("contours_Demo", dst2);return;		
}

在这里插入图片描述

轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形

相关理论介绍

在这里插入图片描述

轮廓周围绘制矩形 -API

approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
基于RDP算法实现,目的是减少多边形轮廓点数。
在这里插入图片描述

cv::minEnclosingCircle(InputArray points, //得到最小区域圆形
Point2f& center, // 圆心位置
float& radius)// 圆的半径
cv::fitEllipse(InputArray points)得到最小椭圆

绘制步骤

首先将图像变为二值图像。
发现轮廓,找到图像轮廓。
通过相关API在轮廓点上找到最小包含矩形和圆,旋转矩形与椭圆。
绘制它们。

程序实例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;
Mat src, gray_src, drawImg;
int threshold_v = 170;
int threshold_max = 255;
const char* output_win = "rectangle-demo";
RNG rng(12345);
void Contours_Callback(int, void*);
int main(int argc, char** argv) {src = imread("D:/photos/45.png");if (!src.data) {printf("could not load image...\n");return -1;}cvtColor(src, gray_src, CV_BGR2GRAY);blur(gray_src, gray_src, Size(3, 3), Point(-1, -1));const char* source_win = "input image";namedWindow(source_win, CV_WINDOW_AUTOSIZE);namedWindow(output_win, CV_WINDOW_AUTOSIZE);imshow(source_win, src);createTrackbar("Threshold Value:", output_win, &threshold_v, threshold_max, Contours_Callback);Contours_Callback(0, 0);waitKey(0);return 0;
}void Contours_Callback(int, void*) {Mat binary_output;vector<vector<Point>> contours;vector<Vec4i> hierachy;threshold(gray_src, binary_output, threshold_v, threshold_max, THRESH_BINARY);//imshow("binary image", binary_output);findContours(binary_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(-1, -1));vector<vector<Point>> contours_ploy(contours.size());vector<Rect> ploy_rects(contours.size());vector<Point2f> ccs(contours.size());vector<float> radius(contours.size());vector<RotatedRect> minRects(contours.size());vector<RotatedRect> myellipse(contours.size());for (size_t i = 0; i < contours.size(); i++) {approxPolyDP(Mat(contours[i]), contours_ploy[i], 3, true);ploy_rects[i] = boundingRect(contours_ploy[i]);minEnclosingCircle(contours_ploy[i], ccs[i], radius[i]);if (contours_ploy[i].size() > 5) {myellipse[i] = fitEllipse(contours_ploy[i]);minRects[i] = minAreaRect(contours_ploy[i]);}}// draw itdrawImg = Mat::zeros(src.size(), src.type());Point2f pts[4];for (size_t t = 0; t < contours.size(); t++) {Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));//rectangle(drawImg, ploy_rects[t], color, 2, 8);//circle(drawImg, ccs[t], radius[t], color, 2, 8);if (contours_ploy[t].size() > 5) {ellipse(drawImg, myellipse[t], color, 1, 8);minRects[t].points(pts);for (int r = 0; r < 4; r++) {line(drawImg, pts[r], pts[(r + 1) % 4], color, 1, 8);}}}imshow(output_win, drawImg);return;
}

运行效果:
在这里插入图片描述

四.图像矩(Image Moments)

1、相关理论

在这里插入图片描述
在这里插入图片描述

2、API介绍

1.计算矩cv::moments

moments(
InputArray  array,//输入数据
bool   binaryImage=false // 是否为二值图像
)

API介绍与使用 – cv::moments 计算生成数据在这里插入图片描述

计算轮廓面积cv::contourArea

contourArea(
InputArray  contour,//输入轮廓数据
bool   oriented// 默认false、返回绝对值)
}

.计算轮廓长度cv::arcLength

arcLength(
InputArray  curve,//输入曲线数据
bool   closed// 是否是封闭曲线)
}

实现步骤:

提取图像边缘。
发现轮廓。
计算每个轮廓对象的矩。
计算每个对象的中心、弧长、面积

例程

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;Mat src, gray_src;
int threshold_value = 80;
int threshold_max = 255;
const char* output_win = "image moents demo";
RNG rng(12345);
void Demo_Moments(int, void*);
int main(int argc, char** argv) {src = imread("D:/photos/45.png");if (!src.data) {printf("could not load image...\n");return -1;}cvtColor(src, gray_src, CV_BGR2GRAY);GaussianBlur(gray_src, gray_src, Size(3, 3), 0, 0);char input_win[] = "input image";namedWindow(input_win, CV_WINDOW_AUTOSIZE);namedWindow(output_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);createTrackbar("Threshold Value : ", output_win, &threshold_value, threshold_max, Demo_Moments);Demo_Moments(0, 0);waitKey(0);return 0;
}void Demo_Moments(int, void*) {Mat canny_output;vector<vector<Point>> contours;vector<Vec4i> hierachy;Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));vector<Moments> contours_moments(contours.size());vector<Point2f> ccs(contours.size());for (size_t i = 0; i < contours.size(); i++) {contours_moments[i] = moments(contours[i]);ccs[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00));}Mat drawImg;// = Mat::zeros(src.size(), CV_8UC3);src.copyTo(drawImg);for (size_t i = 0; i < contours.size(); i++) {if (contours[i].size() < 100) {continue;}Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));printf("center point x : %.2f y : %.2f\n", ccs[i].x, ccs[i].y);printf("contours %d area : %.2f   arc length : %.2f\n", i, contourArea(contours[i]), arcLength(contours[i], true));drawContours(drawImg, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));circle(drawImg, ccs[i], 2, color,2, 8);}imshow(output_win, drawImg);return;
}

在这里插入图片描述

五、多边形测试

1.相关理论

点多边形测试 : 测试一个点是否在给定的多边形内部,边缘或者外部。
在这里插入图片描述

2.相关API介绍

cv::pointPolygonTest
pointPolygonTest(
InputArray  contour,// 输入的轮廓
Point2f  pt, // 测试点
bool  measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离
)
返回数据是double类型

程序示例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;
int main(int argc, char** argv) {const int r = 100;Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1);vector<Point2f> vert(6);vert[0] = Point(3 * r / 2, static_cast<int>(1.34*r));   vert[1] = Point(1 * r, 2 * r);vert[2] = Point(3 * r / 2, static_cast<int>(2.866*r));   vert[3] = Point(5 * r / 2, static_cast<int>(2.866*r));vert[4] = Point(3 * r, 2 * r);   vert[5] = Point(5 * r / 2, static_cast<int>(1.34*r));for (int i = 0; i < 6; i++) {line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8, 0);}vector<vector<Point>> contours;vector<Vec4i> hierachy;Mat csrc;src.copyTo(csrc);findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1);for (int row = 0; row < raw_dist.rows; row++) {for (int col = 0; col < raw_dist.cols; col++) {double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)), true);raw_dist.at<float>(row, col) = static_cast<float>(dist);}}double minValue, maxValue;minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());Mat drawImg = Mat::zeros(src.size(), CV_8UC3);for (int row = 0; row < drawImg.rows; row++) {for (int col = 0; col < drawImg.cols; col++) {float dist = raw_dist.at<float>(row, col);if (dist > 0) {drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255);}else if (dist < 0) {drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255);} else {drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist));drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist));drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist));}}}const char* output_win = "point polygon test demo";char input_win[] = "input image";namedWindow(input_win, CV_WINDOW_AUTOSIZE);namedWindow(output_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);imshow(output_win, drawImg);waitKey(0);return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63699.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数据分析案例30——中国高票房电影分析(爬虫获取数据及分析可视化全流程)

案例背景 最近总看到《消失的她》票房多少多少&#xff0c;《孤注一掷》票房又破了多少多少..... 于是我就想自己爬虫一下获取中国高票房的电影数据&#xff0c;然后分析一下。 数据来源于淘票票&#xff1a;影片总票房排行榜 (maoyan.com) 爬它就行。 代码实现 首先爬虫获…

<AMBA总线篇> AXI总线协议介绍

目录 01 AXI协议简介 AXI协议特性 AXI协议传输特性 02 AXI协议架构 AXI协议架构 write transaction(写传输) read tramsaction(读传输) Interface and interconnect 典型的AXI系统拓扑 03 文章总结 大家好&#xff0c;这里是程序员杰克。一名平平无奇的嵌入式软件工程…

Python 接口测试之Excel表格数据操作方法封装

引言 我们在做接口测试&#xff0c;经常会用到excel去管理测试数据&#xff0c;对Excel的操作比较频繁&#xff0c;那么使用python如何操作Excel文件的读与写呢&#xff1f;由于之前讲的都是大的框框&#xff0c;没有讲这么小的模块使用&#xff0c;现在就化整为0的讲解。 读…

基于OpenCV+LPR模型端对端智能车牌识别——深度学习和目标检测算法应用(含Python+Andriod全部工程源码)+CCPD数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境OpenCV环境Android环境1. 开发软件和开发包2. JDK设置3. NDK设置 模块实现1. 数据预处理2. 模型训练1&#xff09;训练级联分类器2&#xff09;训练无分割车牌字符识别模型 3. APP构建1&#xff09;导入OpenCV库…

数据结构-第一期——数组(Python)

目录 00、前言&#xff1a; 01、一维数组 一维数组的定义和初始化 一维变长数组 一维正向遍历 一维反向遍历 一维数组的区间操作 竞赛小技巧&#xff1a;不用从a[0]开始&#xff0c;从a[1]开始 蓝桥杯真题练习1 读入一维数组 例题一 例题二​ 例题三 实战训…

在iPhone 15发布之前,iPhone在智能手机出货量上占据主导地位,这对安卓来说是个坏消息

可以说这是一记重拳&#xff0c;但似乎没有一个有价值的竞争者能与苹果今年迄今为止的智能手机出货量相媲美。 事实上&#xff0c;根据Omdia智能手机型号市场跟踪机构收集的数据&#xff0c;苹果的iPhone占据了前四名。位居榜首的是iPhone 14 Pro Max&#xff0c;2023年上半年…

详细教程:Stegsolve的下载,jdk的下载、安装以及环境的配置

最近在学习隐写术&#xff0c;下载stegsolve 以及使用stegsolve倒腾了很久&#xff0c;避免朋友们和我一样倒腾了很久&#xff0c;希望此文可以帮到刚在学习隐写的朋友们(win7下使用stegsolve) 文章目录 一、下载stegsolve链接二、jdk的下载三、jdk的安装四、配置环境变量五、检…

Redis——》Pipeline

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

60倍!5G+卫星服务仅中国电信有,中国移动的霸主地位或被撼动

近期国内一家手机企业发布了第三代卫星手机&#xff0c;并且由于再次支持5G而获得高度关注&#xff0c;成为近期手机市场的热点&#xff0c;不过笔者查找了相关资料后却发现&#xff0c;可以支持5G卫星通信服务的仅有中国电信&#xff0c;如此中国移动的霸主地位将可能被撼动。…

Java 大厂八股文面试专题-设计模式 工厂方法模式、策略模式、责任链模式

面试专题-设计模式 前言 在平时的开发中&#xff0c;涉及到设计模式的有两块内容&#xff0c;第一个是我们平时使用的框架&#xff08;比如spring、mybatis等&#xff09;&#xff0c;第二个是我们自己开发业务使用的设计模式。 面试官一般比较关心的是你在开发过程中&#xff…

15-mongodb

一、 MongoDB 简介 1 什么是 MongoDB MongoDB 是一个基于分布式文件存储的数据库。由 C语言编写。在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系…

【力扣每日一题】2023.9.1 买钢笔和铅笔的方案数

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们三个数&#xff0c;一个是我们拥有的钱&#xff0c;一个是钢笔的价格&#xff0c;另一个是铅笔的价格。 问我们一共有几种买笔…

【广州华锐互动】VR全景工厂虚拟导览,虚拟现实技术提升企业数字化信息管理水平

随着工业4.0的到来&#xff0c;VR工厂全景制作成为了越来越多工业企业的选择。传统的工厂管理方式往往存在诸多问题&#xff0c;如信息不对称、安全隐患等。为了解决这些问题&#xff0c;VR工厂全景制作应运而生&#xff0c;它通过结合虚拟现实现实技术和数据采集技术&#xff…

【React学习】—React中的事件绑定(八)

【React学习】—React中的事件绑定&#xff08;八&#xff09; 一、原生JS <body><button id"btn1">按钮1</button><button id"btn2">按钮2</button><button onclick"demo()">按钮3</button><scr…

Java设计模式-状态模式

1.概述 定义&#xff1a; 对有状态的对象&#xff0c;把复杂的“判断逻辑”提取到不同的状态对象中&#xff0c;允许状态对象在其内部状态发生改变时改变其行为。 【例】通过按钮来控制一个电梯的状态&#xff0c;一个电梯有开门状态&#xff0c;关门状态&#xff0c;停止状…

ubuntu tensorrt 安装

官网&#xff0c;非常详细&#xff0c;比大部分博客写的都好&#xff0c;强烈推荐 具体的点进链接

CSS 实现平面圆点绕椭圆动画

前言 &#x1f44f;CSS实现平面圆点绕椭圆动画,速速来Get吧~ &#x1f947;文末分享源代码。记得点赞关注收藏&#xff01; 1.实现效果 2.实现原理 transform-style&#xff1a;CSS 属性 transform-style 设置元素的子元素是位于 3D 空间中还是平面中。如果选择平面&#xf…

Spring补充

一.Spring JDB 配置两个jar包 <!-- spring-jdbc --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jdbc</artifactId> <version>5.2.2.RELEASE</version> </dependency> <!-- 阿里数据…

【前端】Layui动态数据表格拖动排序

目录 一、下载layui-soul-table 二、使用 三、Layui实际使用 1、html代码 2、JS代码 3、PHP后台代码 目的&#xff1a;使用Layui的数据表格&#xff0c;拖动行进行排序。 使用插件&#xff1a;layui-soul-table 和 Layui 1.layui-soul-table文档&#xff1a;https://…

python爬虫-Selenium

一、Selenium简介 Selenium是一个用于Web应用程序测试的工具&#xff0c;Selenium 测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。模拟浏览器功能&#xff0c;自动执行网页中的js代码&#xff0c;实现动态加载。 二、环境配置 1、查看本机电脑谷歌浏览器的版…