pandas中,DataFrame.sample 的理解:

DataFrame.sample 是 pandas 库中 DataFrame 对象的方法,用于从数据框中抽取随机样本。

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)
  1. n(int或None):

    • 指定要抽取的样本数量。如果指定了 n,则 frac 应设置为 None。
  2. frac(float或None):

    • 指定要抽取的样本占原数据框的比例。可以是小数,表示抽取的比例,例如 frac=0.25 表示抽取 25% 的样本。
    • 如果同时指定了 nfrac,将使用 frac 参数。
  3. replace(bool,默认为False):

    • 控制是否允许重复抽样。如果设置为 True,则允许同一样本被抽取多次;如果设置为 False,则不允许重复抽样。
  4. weights(str或数组型,默认为None):

    • 指定每个样本的权重。可以是列名,指示样本权重的列,也可以是权重数组。
  5. random_state(int或RandomState实例或None,默认为None):

    • 控制随机抽样的随机化过程。指定一个整数可以实现可重复的随机抽样。
  6. axis({0或‘index’,1或‘columns’},默认为0):

    • 指定抽样的轴。如果为 0 或 'index',则在行上进行抽样;如果为 1 或 'columns',则在列上进行抽样。

应用示例:

import pandas as pddf = pd.read_csv('label.txt', sep='\t')# 从数据框中抽取10个样本
sampled_data = df.sample(n=10)# 从数据框中抽取总样本的30%
sampled_data_frac = df.sample(frac=0.3)# 从数据框中进行有放回抽样(允许重复)
sampled_with_replacement = df.sample(n=10, replace=True)# 指定每个样本的权重进行抽样
sampled_with_weights = df.sample(n=10, weights='column_with_weights')# 指定随机种子以实现可重复抽样
sampled_with_seed = df.sample(n=10, random_state=42)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/636340.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NLP论文阅读记录 - 2021 | WOS 基于多头自注意力机制和指针网络的文本摘要

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.问题定义和解决问题的假设问题定义解决问题的假设 三.本文方法3.1 总结为两阶段学习3.1.1 基础系统 3.2 重构文本摘要 四 实验效果4.1数据集4.2 对比模型4.3实施细节4.4评估指标4.5 实验结果4…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-帖子详情页实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

PiflowX组件-OracleCdc

OracleCdc组件 组件说明 Oracle CDC连接器允许从Oracle数据库读取快照数据和增量数据。 计算引擎 flink 组件分组 cdc 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子hostnameHostname“”无是Or…

解决一个mysql的更新属性长度问题

需求背景: 线上有一个 platform属性,原有长度为 varchar(10),但是突然需要填入一个11位长度的值;而偏偏这个属性在线上100张表中有50张都存在,并且名字各式各样,庆幸都包含 platform;例如 platf…

JavaSE核心基础-方法-笔记

1.方法概述 将一些代码抽取出来,放到单独的代码块中,形成方法,可以反复调用。 2.方法的定义格式以及解释 格式: 修饰符 返回值类型 方法名 (参数列表){ //方法主…

非科班转码的秋招复盘:地理信息科学GIS专业到后端研发、软件开发

本文介绍地理信息科学(GIS)专业的2024届应届生,在研三上学期期间,寻找后端研发、软件开发等IT方向工作的非科班转码秋招情况。 首先,这篇文章一开始写于2023年年底,当时为了参加一个征文活动,所…

Python爬虫的9个具体应用场景案例分析与具体应用。

文章目录 前言一、新闻采集二、数据挖掘三、网站监测四、舆情分析五、爬虫定制化开发六、数据采集与处理七、网络安全八、网络营销九、自动化测试关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①P…

嵌入式学习-网络编程-Day6

嵌入式学习-网络编程-Day6 一、思维导图 二、作业 1.基于UDP的网络聊天室(2024.1.21号前上交) 项目需求: 1.如果有用户登录,其他用户可以收到这个人的登录信息 2.如果有人发送信息,其他用户可以收到这个人的群聊信…

LabVIEW振动数据采集与分析系统

在这个项目中, LabVIEW软件配合精确的硬件组件,以实现高效的振动数据采集和复杂信号分析。硬件方面,系统采用了PCB振动加速度传感器的高灵敏度传感器,以及NI9234型号的数据采集卡,确保了数据采集的高精度和可靠性。软件…

Leetcode刷题-(6~10)-Java+Python+JavaScript

算法题是程序员的基本功,也是各个大厂必考察的重点,让我们一起坚持写算法题吧 遇事不决,可问春风,春风不语,即是本心。 我们在我们能力范围内,做好我们该做的事,然后相信一切都事最好的安排就…

2024年对我懒这件事的弥补

一、回顾、前言 时光飞逝转眼2023年就“溜”走了,还记得我最后一次发博客是在2023.7.12 距离现在已经n天了,原因尽是懒! 拜拜,我继续偷懒去咯。 咳咳,显然这不可能,当然为了弥补大家我这个大好人也是憋…

前端包管理工具

一、代码共享方案 npm 进行发布上传 npmregistrynpm 进行安装 二、npm 包管理工具 2.1 介绍 安装 node 的时候自动安装 node package manager:Node 包管理工具 可以通过 npm 安装说明已经上传到这个仓库里面了 npm 官网查看是否有发布:npmjs.org …

JAVAEE出街 网络编程(一)

网络编程 一. 网络编程二. 客户端与服务器2.1 一问一答2.2 一问多答2.3 多问一答2.4 多问多答 三. TCP与UDP的特点 一. 网络编程 网络编程本质上就是学习传输层给应用层提供的API,把数据交给传输层,通过一层层的封装将数据通过网卡传输出去。 二. 客户端…

html5实现好看的年会邀请函源码模板

文章目录 1.设计来源1.1 邀请函主界面1.2 诚挚邀请界面1.3 关于我们界面1.4 董事长致词界面1.5 公司合作方界面1.6 活动流程界面1.7 加盟支持界面1.8 加盟流程界面1.9 加盟申请界面1.10 活动信息界面 2.效果和源码2.1 动态效果2.2 源码目录结构 源码下载 作者:xcLei…

《WebKit 技术内幕》之四(4): 资源加载和网络栈

4.实践:高效的资源使用策略 4.1 DNS和TCP连接 DNS解析和TCP连接占用大量的时间,可以从以下几个方面优化: 减少连接的重定向,有些网页中使用了大量的重定向,可能还会有很多次重定向,这不仅要求浏览器建立…

使用 FFmpeg 轻松调整视频的大小/缩放/更改分辨率

在此 FFmpeg 教程中,我们学习使用 FFmpeg 的命令行工具更改视频的分辨率(或调整视频的大小/缩放)。 更改视频的分辨率(也称为调整大小或缩放)是视频编辑、处理和压缩中非常常见的操作。对于 ABR 视频流尤其如此&#…

HCIP BGP选路实验

拓扑图&IP划分如下: 第一步,配置IP&环回地址 以R1为例,R2~R8同理 interface GigabitEthernet 0/0/0 ip address 12.0.0.1 24 interface LoopBack 0 ip address 10.0.0.1 24 第二步:对AS200网段配置OSPF协议 以R2为例&a…

[C#]C# winform部署yolov8目标检测的openvino模型

【官方框架地址】 https://github.com/ultralytics/ultralytics 【openvino介绍】 OpenVINO(Open Visual Inference & Neural Network Optimization)是由Intel推出的,用于加速深度学习模型推理的工具套件。它旨在提高计算机视觉和深度学…

【使用 UCF101 数据集】C3D 模型准备与模型训练

一、前言 本文章将对 C3D 模型进行解析,对里面的模型结构进行详解,最后使用UCF101 数据集对该模型进行实战,在进行推理时能够正确识别出未知视频中里面正确的类别。 二、目录 三、相关内容 四、详细介绍 【使用 UCF101 数据集】C3D 模型准…

HCIA——20应用层:C/S、P2P、peer

学习目标: 计算机网络 1.掌握计算机网络的基本概念、基本原理和基本方法。 2.掌握计算机网络的体系结构和典型网络协议,了解典型网络设备的组成和特点,理解典型网络设备的工作原理。 3.能够运用计算机网络的基本概念、基本原理和基本方法进行…