【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction

原文链接:https://openaccess.thecvf.com/content/CVPR2023/papers/Huang_Tri-Perspective_View_for_Vision-Based_3D_Semantic_Occupancy_Prediction_CVPR_2023_paper.pdf

1. 引言

体素表达需要较大的计算量和特别的技巧(如稀疏卷积),BEV表达难以使用平面特征编码所有3D结构。

本文提出三视图(TPV)表达3D场景。为得到空间中一个点的特征,首先将其投影到三视图平面上,使用双线性插值获取各投影点的特征。然后对3个投影点特征进行求和,得到3D点的综合特征。这样,可以以任意分辨率描述3D场景,并对不同的3D点产生不同的特征。此外,本文还提出基于Transformer的编码器(TPVFormer),以从2D图像获取TPV特征。首先,在TPV网格查询与2D图像特征之间使用图像交叉注意力,将2D信息提升到3D。然后,在TPV特征之间使用跨视图混合注意力进行TPV跨平面交互。

在这里插入图片描述

本文进行的任务为3D语义占用估计,其中训练时只有稀疏激光雷达语义标签,但测试时需要所有体素的语义预测,如上图所示。但由于没有基准,只能进行定性分析,或在两个代理任务上进行定量分析:激光雷达分割(稀疏训练、稀疏测试)和3D语义场景补全(密集训练、密集测试)。两任务均仅使用图像数据;对激光雷达分割任务,仅使用激光雷达点云进行点查询以计算评估指标。

3. 提出的方法

3.1 将BEV推广到TPV

在这里插入图片描述
本文提出三视图(TPV)表达,不需像BEV表达一样压缩某轴,且可以避免体素表达的立方复杂度,如上图所示。具体来说,学习3个轴对齐的正交平面:
T = [ T H W , T D H , T W D ] , T H W ∈ R H × W × C , T D H ∈ R D × H × C , T W D ∈ R W × D × C T=[T^{HW},T^{DH},T^{WD}],T^{HW}\in\mathbb{R}^{H\times W\times C},T^{DH}\in\mathbb{R}^{D\times H\times C},T^{WD}\in\mathbb{R}^{W\times D\times C} T=[THW,TDH,TWD],THWRH×W×C,TDHRD×H×C,TWDRW×D×C

分别表达俯视图、侧视图和前视图。

点查询的形式:给定世界坐标系下的查询点 ( x , y , z ) (x,y,z) (x,y,z),TPV表达首先聚合其在三视图平面上的投影,以得到点的综合描述。设投影到TPV平面的坐标为 [ ( h , w ) , ( d , h ) , ( w , d ) ] [(h,w),(d,h),(w,d)] [(h,w),(d,h),(w,d)],采样的特征为 [ t h w , t d h , t w d ] [t_{hw},t_{dh},t_{wd}] [thw,tdh,twd],则聚合特征为:
t i j = S ( T , ( i , j ) ) = S ( T , P I J ( x , y , z ) ) , ( i , j ) ∈ { ( h , w ) , ( d , h ) , ( w , d ) } f x y z = A ( t h w , t d h , t w d ) t_{ij}=\mathcal{S}(T,(i,j))=\mathcal{S}(T,\mathcal{P}_{IJ}(x,y,z)),(i,j)\in\{(h,w),(d,h),(w,d)\}\\ f_{xyz}=\mathcal{A}(t_{hw},t_{dh},t_{wd}) tij=S(T,(i,j))=S(T,PIJ(x,y,z)),(i,j){(h,w),(d,h),(w,d)}fxyz=A(thw,tdh,twd)

其中 S \mathcal{S} S为采样函数, A \mathcal{A} A为聚合函数, P \mathcal{P} P为投影函数(由于TPV平面与世界坐标系对齐,实际仅进行缩放)。

体素特征的形式:TPV平面会沿其正交方向复制自身并与来自其余视图的特征求和,得到3D特征空间。其存储与计算复杂度为 O ( H W + D H + W D ) O(HW+DH+WD) O(HW+DH+WD)

总的来说,TPV可以通过多视图的相互补充提供更细粒度的3D场景理解,同时保持高效性。

3.2 TPVFormer

本文使用TPV编码器(TPVFormer),通过注意力机制将图像特征提升到TPV平面。

总体结构:本文引入TPV查询、图像交叉注意力(ICA)与跨视图混合注意力(CVHA)以保证有效生成TPV平面,如下图所示。TPV查询就是TPV平面上的网格特征, t ∈ T t\in T tT,用于编码视图特定的信息。跨视图混合注意力在同一平面或不同平面上各TPV查询之间交互,以获取上下文信息。图像交叉注意力则使用可变形注意力聚合图像特征。
在这里插入图片描述
本文还进一步建立了两种Transformer块:混合-交叉注意力块(HCAB,由CVHA与ICA组成,位于TPVFormer的前半部分,查询图像特征中的视觉信息)与混合注意力块(HAB,仅含CVHA,位于HCAB之后,专门进行上下文信息编码)。

TPV查询:每个TPV查询对应相应视图中 s × s m 2 s\times s \ \text{m}^2 s×s m2的2D单元格区域或沿正交方向延伸的3D柱状区域。TPV查询首先会使用原始视觉信息增强(HCAB),再通过来自其余查询的上下文信息细化(HAB)。TPV查询被初始化为可学习参数。

图像交叉注意力:使用可变形注意力以节省计算。对于 ( h , w ) (h,w) (h,w)处的查询 t h w t_{hw} thw,首先通过逆投影函数 P H W − 1 \mathcal{P}^{-1}_{HW} PHW1计算其世界坐标系下的坐标 ( x , y ) (x,y) (x,y),然后沿平面的正交方向均匀采样 N H W r e f N_{HW}^{ref} NHWref个参考点:
( x , y ) = P H W − 1 ( h , w ) = ( ( h − H 2 ) × s , ( w − W 2 ) × s ) Ref h w w = { ( x , y , z i ) } i = 1 N H W r e f (x,y)=\mathcal{P}^{-1}_{HW}(h,w)=((h-\frac H 2)\times s,(w-\frac W 2)\times s)\\ \text{Ref}_{hw}^w=\{(x,y,z_i)\}^{N_{HW}^{ref}}_{i=1} (x,y)=PHW1(h,w)=((h2H)×s,(w2W)×s)Refhww={(x,y,zi)}i=1NHWref

其中 Ref h w w \text{Ref}_{hw}^w Refhww表示查询 t h w t_{hw} thw在世界坐标系下的参考点集。其余平面的查询类似,需要注意不同平面的 N r e f N^{ref} Nref不同,因为不同轴的范围不同。然后,将参考点投影到像素坐标系,以采样图像特征:
Ref h w p = P p i x ( Ref h w w ) \text{Ref}_{hw}^p=\mathcal{P}_{pix}(\text{Ref}_{hw}^w) Refhwp=Ppix(Refhww)

其中 Ref h w p \text{Ref}_{hw}^p Refhwp为查询 t h w t_{hw} thw在像素坐标系下的参考点集, P p i x \mathcal{P}_{pix} Ppix为由相机内外参确定的透视投影函数。若存在 N c N_c Nc个相机,则生成的参考点集为 { Ref h w p , j } j = 1 N c \{\text{Ref}_{hw}^{p,j}\}_{j=1}^{N_c} {Refhwp,j}j=1Nc。此外,可以剔除为落在图像范围外的参考点以节省计算。最后,将 t h w t_{hw} thw通过两个线性层生成偏移量与注意力权重,并通过加权求和采样图像特征产生更新的TPV查询:
ICA ( t h w , I ) = 1 ∣ N h w v a l ∣ ∑ j ∈ N h w v a l DA ( t h w , Ref h w p . j , I j ) \text{ICA}(t_{hw},I)=\frac 1{|N_{hw}^{val}|}\sum_{j\in N_{hw}^{val}}\text{DA}(t_{hw},\text{Ref}_{hw}^{p.j},I_j) ICA(thw,I)=Nhwval1jNhwvalDA(thw,Refhwp.j,Ij)

其中 N h w v a l N_{hw}^{val} Nhwval为有效视图的集合, I j I_j Ij为视图 j j j的图像特征, DA \text{DA} DA为可变形注意力函数。

跨视图混合注意力:该步骤使不同视图能交换信息,以提取上下文。同样使用可变形注意力,其中TPV平面作为键与值。首先将参考点分为3个不相交的子集,分属俯视图、侧视图和前视图:
R h w = R h w t o p ∪ R h w s i d e ∪ R h w f r o n t R_{hw}=R^{top}_{hw}\cup R_{hw}^{side}\cup R_{hw}^{front} Rhw=RhwtopRhwsideRhwfront

为收集俯视图平面的参考点,进行查询 t h w t_{hw} thw所在邻域内的随机采样。对侧视图与前视图,沿正交方向均匀采样并投影到侧视平面与前视平面:
R h w s i d e = { ( d i , h ) } i , R h w f r o n t = { ( w , d i ) } i R_{hw}^{side}=\{(d_i,h)\}_i,R_{hw}^{front}=\{(w,d_i)\}_i Rhwside={(di,h)}i,Rhwfront={(w,di)}i

然后进行可变形注意力:
C V H A ( t h w ) = DA ( t h w , R h w , T ) CVHA(t_{hw})=\text{DA}(t_{hw},R_{hw},T) CVHA(thw)=DA(thw,Rhw,T)

3.3 TPV的应用

需要将TPV平面 T T T转化为点或体素特征以输入任务头。

点特征:给定世界坐标系下的点坐标,与点查询相同,将点投影到TPV平面上检索特征并求和。

体素特征:将TPV平面沿正交方向广播得到3个大小相同的特征张量,并求和。

为进行分割任务,本文在点或体素特征上添加2层MLP以预测语义标签。

4. 实验

4.1 任务描述

3D语义占用预测:使用稀疏语义标签(激光雷达点)训练,但测试时需要生成所有体素的语义占用。

激光雷达分割:对应点查询形式,预测给定点的语义标签。注意仍使用RGB图像输入。

语义场景补全(SSC):使用体素标签监督训练。该任务对应体素查询形式。评估时,场景补全使用IoU(忽略类别),SSC使用mIoU。

4.2 实施细节

3D语义占用预测和激光雷达分割:训练时使用交叉熵损失和lovasz-softmax损失。其中3D语义占用预测会从稀疏点云生成逐体素的伪标签(不含点的体素标记为空),损失函数均使用体素预测;激光雷达分割任务使用点预测计算lovasz-softmax损失,体素预测计算交叉熵损失以提高点分类精度并避免语义模糊。

语义场景补全:使用MonoScene的损失。

4.3 3D语义占用预测结果

主要结果:可视化表明,预测结果比激光雷达更加密集,表明了TPV表达对建模3D场景和语义占用预测的有效性。

测试时的任意分辨率:可以在测试时随意调整TPV平面的分辨率,而无需重新训练网络。

4.4 激光雷达分割结果

作为第一个基于视觉的激光雷达分割任务,本文与其余基于激光雷达的任务比较。实验表明,本文方法能达到相当的性能水平。

4.5 语义场景补全结果

实验表明,本文的方法在性能和速度上均能超过MonoScene,且参数量更低。

4.6 分析

激光雷达分割中的损失函数:当损失函数的两项分别使用点预测和体素预测时,体素预测和点预测的mIoU均很高且相近。当仅使用点预测(体素预测)时,体素预测(点预测)的性能会比点预测(体素预测)明显更低。这表明连续与离散的监督对学习鲁棒表达的重要性。

TPV分辨率和特征维度:提高分辨率带来的性能提升更为显著,因为能增强细粒度结构的建模。

BEV、体素与TPV的比较:各表达使用相似的方法将图像特征提升到3D。结果表明,在相近的模型大小下,TPV的性能与速度均更高。

HCAB与HAB块的数量:当HCAB的数量增加时,IoU增大,这说明直接视觉线索对几何理解的重要性。但上下文信息也很重要,因为最高的mIoU是在适当数量的HCAB与HAB下得到的。

局限性:基于图像的方法的优势是做出3D空间密集预测的能力;但在激光雷达分割任务上,仍不如激光雷达方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/635996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python开发之远程开发工具对比

前言 除了本地开发外,还有一种常见的开发方式就是远程开发,一般情况是一台Windows或mac笔记本作为日常使用的电脑,另有一台linux服务器作为开发服务器。开发服务器的性能往往较强,这样远程开发的方式一方面可以让我们在习惯的系统…

组件(Component):可重用的元素

目标效果:点击粉色按钮后,出现一行“为什么非要点我?”的文字。 用组件的方式实现:首先单击项目文件夹01,然后右键弹窗中点击“添加新文件” 。 选择 QML File 文件: 文件名就叫Button,然后把代…

QoS简介

QoS产生的背景 网络的普及和业务的多样化使得互联网流量激增,从而产生网络拥塞,增加转发时延,严重时还会产生丢包,导致业务质量下降甚至不可用。所以,要在网络上开展这些实时性业务,就必须解决网络拥塞问题…

Three.js 学习笔记之模型(学习中1.20更新) | 组 - 模型 - 几何体 - 材质

文章目录 模型 几何体 材质层级模型组- THREE.Group递归遍历模型树结构object3D.traverse() 模型点模型Points - 用于显示点线模型Line | LineLoop | LineSegments网格模型mesh - 三角形网格模型独有的属性与方法 几何体BufferGeometry缓冲类型几何体BufferGeometry - 基类创…

基于SSM的KTV包厢管理系统(有报告)。Javaee项目,ssm项目。

演示视频: 基于SSM的KTV包厢管理系统(有报告)。Javaee项目,ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过…

Linux 查看命令有哪些?区别是什么(2023-12-27)

参考文章 linux中ls、cat、vim、more、head、tail、grep同是查看命令,他们之间到底有什么区别? - 知乎 linux中ls、cat、vim、more、head、tail、grep同是查看命令,他们之间到底有什么区别? 1、ls ls(英文全拼&…

使用 mybatis-plus 的mybaits的一对多时, total和record的不匹配问题

应该是框架的问题,去官方仓库提了个issues,等回复 https://github.com/baomidou/mybatis-plus/issues/5923 回复来了: 背景 发现 record是两条,但是total显示3 使用resultMap一对多时,三条数据会变成两条&#xff0…

J4 - ResNet与DenseNet结合

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 环境模型设计模型效果展示总结与心得体会 环境 系统: Linux语言: Python3.8.10深度学习框架: Pytorch2.0.0cu118显卡:GT…

高速CAN总线 C 或 B 节点发送 A节点接收 电压分析

CAN收发器放大图 CAN总线3节点框图,如下图 图① CAN总线 C 节点发送,B 节点接收简化后的逻辑框图如下图。 总线上 A B C 三个节点,按照CAN总线规定,首尾 A B 两个节点处需要接入1个120Ω的终端电阻,如下图&#xff1a…

Pytest系列(2) - assert断言详细使用

前言 与unittest不同,pytest使用的是python自带的assert关键字来进行断言assert关键字后面可以接一个表达式,只要表达式的最终结果为True,那么断言通过,用例执行成功,否则用例执行失败 assert小栗子 想在抛出异常之…

重学Java 10 面向对象

正是风雨欲来的时候,火却越烧越旺了 ——24.1.20 重点 1.为何使用面向对象思想编程 2.如何使用面向对象思想编程 3.何时使用面向对象思想编程 4.利用代码去描述世间万物的分类 5.在一个类中访问另外一个类中的成员 -> new对象 6.成员变量和局部变量的区别 一…

力扣刷MySQL-第六弹(详细讲解)

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:力扣刷题讲解-MySQL 🍹文章作者技术和水平很有限,如果文中出…

Maven error in opening zip file?maven源码debug定位问题jar包

文章目录 问题发现调试Maven1. 查看maven版本2. 下载对应版本的maven源码3. 打开maven源码,配置启动选项 启动maven debug模式进入maven 源码,打断点调试找jar包算账 已录制视频 视频连接 问题发现 最近使用maven分析jar包的时候遇到了一个很搞的问题。…

PSoc62™开发板之i2c通信

实验目的 使用模拟i2c接口读取温湿度气压模块BME280数据 实验准备 PSoc62™开发板温湿度气压模块BME280公母头杜邦线 板载资源 本次实验是通过模拟i2c时序的方式来进行通信,理论上可以有非常多的方式配置i2c引脚,不像硬件i2c那样芯片出厂引脚已经固…

Summary for Packaging and Assembly Technologies for Integrated Systems

目录 Introduction Type of Packages: Packaging of integrated devices Question 1: Question 2: Question 3: Question 4: Question 5: Report 1: Front-end and back-end process Question 6: Question 7: Inspection Process Report 2: Prototyping and mas…

【谭浩强C程序设计精讲 chap4】选择结构程序设计

文章目录 第4章 选择结构程序设计一、用 if 语句实现选择结构二、用 switch 语句实现多分支选择结构三、条件运算符和条件表达式 第4章 选择结构程序设计 一、用 if 语句实现选择结构 一般形式: if (表达式)  语句1 [ else  语句2 ] 其他形式,常用的…

web前端项目-3D台球游戏【附源码】

3D台球 【3D台球】这款游戏的操作简洁明了,玩家只需要简单的练习两分钟便能够掌握。玩家需要用鼠标控制击球的方向和力度,将白球打进洞中。每次进球后,玩家需要选择下一个要击打的球,直到所有的球都打进洞中。但要注意避免黑球进…

【Unity】URP报错Object reference not set to an instance of an object

使用URP之后,Unity报错:显示不正常 NullReferenceException: Object reference not set to an instance of an object UnityEngine.Rendering.Universal.UniversalAdditionalCameraData.get_cameraStack () (at Library/PackageCache/com.unity.render-p…

Flink实时数仓同步:拉链表实战详解

一、背景 在大数据领域,业务数据通常最初存储在关系型数据库,例如MySQL。然而,为了满足日常分析和报表等需求,大数据平台会采用多种不同的存储方式来容纳这些业务数据。这些存储方式包括离线仓库、实时仓库等,根据不同…

智能AI写作到底怎么样?这几款AI写作非常好用

近年来,人工智能(AI)技术的快速发展已经渗透到各个领域,包括写作领域。AI写作软件通过模仿指定作家的风格和语言,能够生成高质量的文章。这种技术的出现引发了广泛的讨论和争议。本文将探讨AI写作的优点,并…