Three.js 学习笔记之模型(学习中1.20更新) | 组 - 模型 - 几何体 - 材质

文章目录

  • 模型 = 几何体 + 材质
    • 层级模型
      • 组- THREE.Group
      • 递归遍历模型树结构object3D.traverse()
    • 模型
    • 点模型Points - 用于显示点
      • 线模型Line | LineLoop | LineSegments
      • 网格模型mesh - 三角形
        • 网格模型独有的属性与方法
    • 几何体BufferGeometry
      • 缓冲类型几何体BufferGeometry - 基类
        • 创建几何体的方式
        • BufferAttribute Types
          • 定义顶点法线 geometry.attributes.normal
      • BufferGeometry的子类几何体
        • 几何体的分段数 - 将一个大块分成几个小块
        • SphereGeometry 球体
      • 几何体的旋转、缩放与平移
    • 材质 Material
      • 点材质PointsMaterial - Points使用的默认材质
      • 网格材质 Mesh
        • MeshLambertMaterial
        • 高光网格材质 MeshPhongMaterial

模型 = 几何体 + 材质

  • 模型对象的父类都是三维物体Object3D

  • Three.js的材质默认正面可见、背面不可见

    • 解决办法:材质配置对象中设置side属性
    side取值描述
    THREE.FrontSide只有正面可见
    THREE.DoubleSide两面可见
    THREE.BackSide设置只有背面可见
  • 模型position是指模型中心的位置,是一个三维向量。几何体attributes.position是指几何体顶点位置信息,是一个BufferAttribute类型

三维物体Object3D类的属性与方法

属性与方法描述
position : Vector3设置模型中心的位置,默认值THREE.Vector3(0.0,0.0,0.0)
translateX/translateY/translateZ ( distance : Float )沿着X轴将平移distance个单位,本质改变的position 值
translateOnAxis ( axis : Vector3, distance : Float )沿着标准化后的向量axis(归一化后的向量表示方向)移动distance
scale : Vector3各分量按参数缩放
rotation:Euler(欧拉对象) 或quaternion:Quaternion(四元数)模型旋转的角度,单位是火毒
rotateX(rad : Float)、rotateY(rad : Float)、rotateZ(rad : Float)绕局部空间的X/Y/Z轴旋转这个物体。本质是修改模型的角度属性.rotation
rotateOnAxis ( axis : Vector3, angle : Float )绕标准化后的向量(看作轴)旋转angle个弧度
clone ( recursive : Boolean ) : Object3D参数表示是否可以克隆参数的后代,默认为true

克隆的规则暂时还不清楚,但克隆模型,其几何体和材质是共享的(克隆的地址)。
如果几何体和材质单独调用clone克隆出来是独立的。
copy ( object : Object3D, recursive : Boolean )复制参数对象到这个对象中。 事件监听器和用户定义的回调函数不会被复制。
children:Array子对象数组(分组对象的子孩子),调用三维物体实例的add方法时,实际就是将参数加入到该数组中。
add (object: Object3D, …)添加参数对象到这个对象的子级children,可以添加任意数量的对象。 当前传入的对象中的父级将在这里被移除,因为一个对象仅能有一个父级。
name : String对象的名称,可选、不必唯一。默认值是一个空字符串。
getObjectByName (name:String):Object3D从该对象开始,搜索一个对象及其子级,返回第一个带有匹配name的子对象。
const axis = new THREE.Vector3(1, 1, 1);
axis.normalize(); //向量归一化后表示方向,方向不变,大小变为单位向量
//沿着axis轴表示方向平移100
mesh.translateOnAxis(axis, 100);

层级模型

组- THREE.Group

语法:new THREE.Group()
说明:其父类也是三维物体Object3D,基本和三维物体Object3D一致。可以看作一个只用于分组没有实体的模型,可以分组操作模型。
作用:可以看作将模型进行分组,原来是直接将一个一个模型add进场景scene,现在是将所有模型先进行分组,然后将分组后的分组模型group添加进场景scene

受threejs历史原因,有些时候代码中也会直接用Object3D甚至Mesh作为Group使用,可以但不推荐,语义化不够强。

group可以看作mesh1mesh2的父对象,父对象旋转缩放平移变换,子对象跟着变化
在这里插入图片描述

//创建两个网格模型mesh1、mesh2
const geometry = new THREE.BoxGeometry(20, 20, 20);
const material = new THREE.MeshLambertMaterial({color: 0x00ffff});
// 创建一个组
const group = new THREE.Group();
const mesh1 = new THREE.Mesh(geometry, material);
const mesh2 = new THREE.Mesh(geometry, material);
mesh2.translateX(25);
//把mesh1型插入到组group中,mesh1作为group的子对象
group.add(mesh1);
//把mesh2型插入到组group中,mesh2作为group的子对象
group.add(mesh2);
//把group插入到场景中作为场景子对象
scene.add(group);

组对象私有的属性(无私有方法)

属性名描述
isGroup:Boolean判断是否是组对象
type:String不可变的值,组对象的类型Group字符串

递归遍历模型树结构object3D.traverse()

语法:object3D.traverse ( callback : Function ) : undefined
本质:遍历object3D实例的children属性

每个模型可以通过object3D.name属性命名,命名之后可以通过遍历模型树搭配object3D.getObjectByName(name) ,找到具体的模型。

案例:假设有一个小区房子,结构如下
在这里插入图片描述

// 批量创建多个长方体表示高层楼
const group1 = new THREE.Group(); //所有高层楼的父对象
group1.name = "高层";
for (let i = 0; i < 5; i++) {const geometry = new THREE.BoxGeometry(20, 60, 10);const material = new THREE.MeshLambertMaterial({color: 0x00ffff});const mesh = new THREE.Mesh(geometry, material);mesh.position.x = i * 30; // 网格模型mesh沿着x轴方向阵列group1.add(mesh); //添加到组对象group1mesh.name = i + 1 + '号楼';// console.log('mesh.name',mesh.name);
}
group1.position.y = 30;const group2 = new THREE.Group();
group2.name = "洋房";
// 批量创建多个长方体表示洋房
for (let i = 0; i < 5; i++) {const geometry = new THREE.BoxGeometry(20, 30, 10);const material = new THREE.MeshLambertMaterial({color: 0x00ffff});const mesh = new THREE.Mesh(geometry, material);mesh.position.x = i * 30;group2.add(mesh); //添加到组对象group2mesh.name = i + 6 + '号楼';
}
group2.position.z = 50;
group2.position.y = 15;const model = new THREE.Group();
model.name='小区房子';
model.add(group1, group2);
model.position.set(-50,0,-25);// 递归遍历model包含所有的模型节点
model.traverse(function(obj) {console.log('所有模型节点的名称',obj.name);// obj.isMesh:if判断模型对象obj是不是网格模型'Mesh'if (obj.isMesh) {//判断条件也可以是obj.type === 'Mesh'obj.material.color.set(0xffff00);}
});

模型

点模型Points - 用于显示点

语法:new Points( geometry : BufferGeometry, material : Material )

  • geometry 几何体对象(可选),BufferGeometry的实例,默认值是一个新的BufferGeometry
  • material 材质对象(可选),默认值为PointsMaterial

描述:一个用于显示点的类,将几何体geometry渲染成点。

线模型Line | LineLoop | LineSegments

语法:new Line( geometry : BufferGeometry, material : Material )

  • geometry 线段的顶点,默认值是一个新的BufferGeometry
  • material 线的材质,默认值是一个新的且随机颜色的LineBasicMaterial
线模型绘制线条的规则
Line从第一个点开始到最后一个点,依次连成线
不闭合
LineLoop从第一个点开始到最后一个点,依次连成线,并将最后一个顶点连回第一个顶点
闭合
LineSegments从第一个点开始,第一个点连接第二个点,第三个点连接第四个点…有n个点,就有n/2条线
间断

网格模型mesh - 三角形

本质:一个一个三角形拼接
说明:几何体所有顶点坐标三个为一组,构成一个三角形,多组顶点构成多个三角形,用来模拟物体的表面。
在这里插入图片描述
三角形的正反面
三个点可以构成一个三角形,从第一个点往第三个点连接

  • 正面:相机对着面,连接的顺序是逆时针
  • 反面:相机对着面,连接的顺序是顺时针
网格模型独有的属性与方法
字段描述
isMesh : Boolean当前对象是否时网格模型
geometry : BufferGeometry物体的结构
material : Material物体的外观,默认值是一个MeshBasicMaterial
const mesh = new THREE.Mesh(geometry, material);
// 获取模型的几何体
console.log('mesh.geometry',mesh.geometry);
// 获取模型的材质
console.log('mesh.material',mesh.material);

几何体BufferGeometry

常见几何体可以看成是封装后的BufferGeometry

缓冲类型几何体BufferGeometry - 基类

描述:BufferGeometry是一个没有任何形状的空几何体,通过定义顶点数据将BufferGeometry自定义为任何几何形状。每个几何体可以看作是由多个顶点构成的图案。

BufferGeometry实例的属性与方法

属性名/方法描述
index:BufferAttribute绑定几何体的顶点索引,每个三角形都绑定了三个顶点的索引。
允许顶点坐标在三角形中复用。
attributes : Object存储该几何体相关属性的hashmap (这里直接打印看不见里面的属性),每个value的类型都是BufferAttribute
可以通过 几何体.setAttribute几何体.getAttribute 添加和访问与当前几何体相关的属性。

案例
1.使用 THREE.BufferGeometry创建一个空的几何体对象

const geometry = new THREE.BufferGeometry(); 

2.利用Float32Array定义顶点数据,使用属性缓冲区对象BufferAttribute表示threejs几何体顶点数据。

通过javascript类型化数组Float32Array创建一组xyz坐标数据用来表示几何体的顶点坐标。

//类型化数组创建顶点数据
const vertices = new Float32Array([0, 0, 0, //顶点1坐标50, 0, 0, //顶点2坐标0, 100, 0, //顶点3坐标0, 0, 10, //顶点4坐标0, 0, 100, //顶点5坐标50, 0, 10, //顶点6坐标
]);
// 创建属性缓冲区对象,3个为一组,表示一个顶点的xyz坐标
const attribue = new THREE.BufferAttribute(vertices, 3);

3.设置几何体的定点.attributes.position

// 设置几何体attributes属性的位置属性
geometry.attributes.position = attribue;

在这里插入图片描述

4.渲染顶点

4.1使用点模型渲染顶点数据,会把几何体渲染为点,网格模型Mesh会把几何体渲染为面。

// 点渲染模式
const material = new THREE.PointsMaterial({color: 0xffff00,size: 10.0 //点对象像素尺寸
}); 
const points = new THREE.Points(geometry, material); //点模型对象

在这里插入图片描述

4.2使用线模型渲染顶点数据,从第一个点开始到最后一个点,依次连成线。

// 线材质对象
const material = new THREE.LineBasicMaterial({color: 0xff0000 //线条颜色
}); 
// 创建线模型对象
const line = new THREE.Line(geometry, material);

在这里插入图片描述
4.3用网格模型渲染顶点

const material = new THREE.MeshBasicMaterial({side: THREE.DoubleSide, //两面可见
});

在这里插入图片描述

创建几何体的方式
  • 直接利用顶点数据,每一个点对应一个坐标
    • new Float32Array构造坐标数组 | 32位的浮点数型数组
    • THREE.BufferAttribute(坐标数组,3) 每三个坐标为一组,构建顶点坐标。顶点的个数等于组数
    • 赋值给geometry.attributes.position
  • 利用顶点索引,多个顶点可以利用同一个坐标
    • new Float32Array构造坐标数组
    • THREE.BufferAttribute(坐标数组,3) 每三个坐标为一组,构建顶点坐标。
    • new Uint16Array 构造索引顶点数组,顶点的个数需要和索引的个数一样 | 16 位无符号整数
    • geometry.index = new THREE.BufferAttribute(indexes, 1) 通过索引去坐标数组中取顶点坐标

案例: 构建一个矩形平面几何体 - 通过顶点数据
顶点坐标:一个矩形平面,可以至少通过两个三角形拼接而成。
三角形方向:两个三角形的正面需要保持一致
在这里插入图片描述

const vertices = new Float32Array([0, 0, 0, //顶点1坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标0, 0, 0, //顶点4坐标   和顶点1位置相同80, 80, 0, //顶点5坐标  和顶点3位置相同0, 80, 0, //顶点6坐标
]);
const attribue = new THREE.BufferAttribute(vertices, 3);
geometry.attributes.position = attribue;

几何体顶点索引数据 - 通过顶点索引
在上述案例中,坐标4和坐标5其实是重复的坐标,重复的坐标可以复用吗?

// 删除重复的坐标
const vertices = new Float32Array([0, 0, 0, //顶点1坐标 | 索引080, 0, 0, //顶点2坐标 4坐标 | 索引180, 80, 0, //顶点3坐标 5坐标 | 索引20, 80, 0, //顶点6坐标 | 索引3
]);// Uint16Array类型数组创建顶点索引数据
const indexs = new Uint16Array([// 下面索引值对应顶点位置数据中的顶点坐标0, 1, 2, 0, 2, 3,
])// 索引数据赋值给几何体的index属性 1个为1组
geometry.index = new THREE.BufferAttribute(indexs, 1); 
BufferAttribute Types

three.js 中一共有 9 种 BufferAttribute,每种和 JavaScript 中的类型相对应Typed Arrays使用new创建BufferAttribute对象时,传入数组是什么内省,生成的BufferAttribute就是什么类型

BufferAttribute 类型对应的JS数组类型
THREE.Float64BufferAttributeFloat64Array
THREE.Uint32BufferAttributeUint32Array
THREE.Int32BufferAttributeInt32Array
THREE.Uint16BufferAttributeUint16Array
THREE.Int16BufferAttributeInt16Array
THREE.Uint8ClampedBufferAttributeUint8ClampedArray
THREE.Uint8BufferAttributeUint8Array
THREE.Int8BufferAttributeInt8Array
定义顶点法线 geometry.attributes.normal

数学上法线的概念
一个平面,法线的就是改平面的垂线,如果是光滑曲面,一点的法线就是该点切面的法线。

Three.js中法线是通过顶点定义,默认情况下,每个顶点都有一个法线数据。

无顶点索引的使用方式

const vertices = new Float32Array([0, 0, 0, //顶点1坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标0, 0, 0, //顶点4坐标80, 80, 0, //顶点5坐标0, 80, 0, //顶点6坐标
]);
geometry.attributes.position =new THREE.BufferAttribute(vertices, 3);
const material = new THREE.MeshLambertMaterial({color: 0xff0000, //线条颜色side: THREE.DoubleSide
}); 
// 矩形平面,无索引,两个三角形,6个顶点
// 每个顶点的法线数据和顶点位置数据一一对应
const normals = new Float32Array([0, 0, 1, //顶点1法线( 法向量 )0, 0, 1, //顶点2法线0, 0, 1, //顶点3法线0, 0, 1, //顶点4法线0, 0, 1, //顶点5法线0, 0, 1, //顶点6法线
]);
// 设置几何体的顶点法线属性.attributes.normal
geometry.attributes.normal = new THREE.BufferAttribute(normals, 3); 

有顶点索引的使用方式

const vertices = new Float32Array([0, 0, 0, //顶点1坐标 顶点4坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标 顶点5坐标0, 80, 0, //顶点6坐标
]);
geometry.attributes.position =new THREE.BufferAttribute(vertices, 3);
// 矩形平面,有索引,两个三角形,有2个顶点重合,有4个顶点
// Uint16Array类型数组创建顶点索引数据
const indexs = new Uint16Array([// 下面索引值对应顶点位置数据中的顶点坐标0, 1, 2, 0, 2, 3,
])
geometry.index = new THREE.BufferAttribute(indexs, 1); 
// 每个顶点的法线数据和顶点位置数据一一对应
const normals = new Float32Array([0, 0, 1, //顶点1法线( 法向量 )0, 0, 1, //顶点2法线0, 0, 1, //顶点3法线0, 0, 1, //顶点4法线
]);
// 设置几何体的顶点法线属性.attributes.normal
geometry.attributes.normal = new THREE.BufferAttribute(normals, 3);

BufferGeometry的子类几何体

在这里插入图片描述

几何体的分段数 - 将一个大块分成几个小块

很多几何体构造函数提供了分段数,其默认值为1。除去必要参数之外的第一个参数表示x轴分成几段,第二个参数表示y轴分成几段。

PlaneGeometry矩形平面案例

// 把一个矩形x轴方向分为两段,每份2个三角形,一共4个三角形
const geometry = new THREE.PlaneGeometry(50,50,2,1);

在这里插入图片描述
SphereGeometry球体平面案例

// 参数2表示水平方向(经线方向)  参数3表示垂直方向(维度)
// 绿色框为一块,每个水平方向有4块,每一块由两个三角形组成
const geometry = new THREE.SphereGeometry( 50, 4, 16 );

在这里插入图片描述

SphereGeometry 球体

语法:new SphereGeometry(radius : Float,可选参数)

由于所有几何体都是由一个一个三角形组成,所以如果球体细分数比较低,表面就不会那么光滑,分段数越大越接近一个球。

可选参数描述
widthSegments水平分段数(沿着经线分段),最小值为3,默认值为32。
heightSegments垂直分段数(沿着纬线分段),最小值为2,默认值为16。

几何体的旋转、缩放与平移

本质:几何变换的本质是改变几何体的顶点数据
在这里插入图片描述

方法描述
scale ( x : Float, y : Float, z : Float )从几何体原始位置开始缩放几何体
translate ( x : Float, y : Float, z : Float )从几何体原始位置开始移动几何体
rotateX/rotateY/rotateZ( radians : Float )沿着主轴旋转几何体,参数是弧度
center()几何体中心与坐标原点重合
// 几何体xyz三个方向都放大2倍
geometry.scale(2, 2, 2);
// 几何体沿着x轴平移50
geometry.translate(50, 0, 0);
// 几何体绕着x轴旋转45度
geometry.rotateX(Math.PI / 4);
// 几何体旋转、缩放或平移之后,查看几何体顶点位置坐标的变化
// BufferGeometry的旋转、缩放、平移等方法本质上就是改变顶点的位置坐标
console.log('顶点位置数据', geometry.attributes.position);

材质 Material

材质Material是所有材质的父类。

创建材质:new 材质(配置对象)
说明:材质描述了物体的外观,定义方式与渲染器无关

配置对象里可配置的属性其实就是返回的材质实例拥有的属性

/* 案例 */
const material = new THREE.MeshLambertMaterial({color:0xff0000,wireframe:true,
});
console.log("material.wireframe:",material.wireframe)
方法与属性描述
transparent : Boolean定义此材质是否透明,默认为false。对渲染有影响,透明对象需要特殊处理,并在非透明对象之后渲染。设置为true之后可以使用opacity调整透明度。
opacity:Float范围是0.0 - 1.0,表明材质的透明度。值0.0表示完全透明,1.0表示完全不透明(默认)。如果transparent属性未设置为true,则材质将保持完全不透明,此值仅影响其颜色。
side:Integer定义将要渲染哪一面,默认是正面(相机照着那面,连接的顺序是逆时针)

点材质PointsMaterial - Points使用的默认材质

语法:new PointsMaterial( parameters : Object )

实例的属性和方法

属性/方法描述
size:Number设置点的大小,默认值为1.0。
color:Color材质的颜色,默认值为白色 (0xffffff)。

网格材质 Mesh

在这里插入图片描述
使用收光照影响的材质时,如果没有光照默认是黑色的(renderer画布设置了颜色可以看出)

MeshLambertMaterial

语法:new MeshLambertMaterial( parameters : Object )
对光照的反射为漫反射:光线向四周反射。
在这里插入图片描述

Lambert网格材质的属性与方法

属性和方法描述
wireframe : Boolean将几何体渲染为线框,默认值为false,渲染为平面多边形。
高光网格材质 MeshPhongMaterial
  • 语法:new MeshPhongMaterial( parameters : Object )
    参数对象的属性 = 自有属性 + Material基类继承的属性
  • 对光照的反射为镜面反射:想象一面镜子的反射,如果刚好反射光对眼睛,会非常刺眼(某个局部区域高亮,像擦了高光)

注意:AmbientLight环境光没有方向,整体改变场景的光照。所以只有环境光的,高光效果会失效。

MeshPhongMaterial高光网格材质配置参数的自有属性

属性名属性描述
color : Color材质的颜色,默认值为白色(0xffffff)
shininess高亮的程度,越高的值越闪亮,默认30
specular高光颜色,默认为0x111111灰色

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/635992.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的KTV包厢管理系统(有报告)。Javaee项目,ssm项目。

演示视频&#xff1a; 基于SSM的KTV包厢管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过…

Linux 查看命令有哪些?区别是什么(2023-12-27)

参考文章 linux中ls、cat、vim、more、head、tail、grep同是查看命令&#xff0c;他们之间到底有什么区别&#xff1f; - 知乎 linux中ls、cat、vim、more、head、tail、grep同是查看命令&#xff0c;他们之间到底有什么区别&#xff1f; 1、ls ls&#xff08;英文全拼&…

使用 mybatis-plus 的mybaits的一对多时, total和record的不匹配问题

应该是框架的问题&#xff0c;去官方仓库提了个issues&#xff0c;等回复 https://github.com/baomidou/mybatis-plus/issues/5923 回复来了&#xff1a; 背景 发现 record是两条&#xff0c;但是total显示3 使用resultMap一对多时&#xff0c;三条数据会变成两条&#xff0…

J4 - ResNet与DenseNet结合

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 环境模型设计模型效果展示总结与心得体会 环境 系统: Linux语言: Python3.8.10深度学习框架: Pytorch2.0.0cu118显卡&#xff1a;GT…

高速CAN总线 C 或 B 节点发送 A节点接收 电压分析

CAN收发器放大图 CAN总线3节点框图&#xff0c;如下图 图① CAN总线 C 节点发送&#xff0c;B 节点接收简化后的逻辑框图如下图。 总线上 A B C 三个节点&#xff0c;按照CAN总线规定&#xff0c;首尾 A B 两个节点处需要接入1个120Ω的终端电阻&#xff0c;如下图&#xff1a…

Pytest系列(2) - assert断言详细使用

前言 与unittest不同&#xff0c;pytest使用的是python自带的assert关键字来进行断言assert关键字后面可以接一个表达式&#xff0c;只要表达式的最终结果为True&#xff0c;那么断言通过&#xff0c;用例执行成功&#xff0c;否则用例执行失败 assert小栗子 想在抛出异常之…

重学Java 10 面向对象

正是风雨欲来的时候&#xff0c;火却越烧越旺了 ——24.1.20 重点 1.为何使用面向对象思想编程 2.如何使用面向对象思想编程 3.何时使用面向对象思想编程 4.利用代码去描述世间万物的分类 5.在一个类中访问另外一个类中的成员 -> new对象 6.成员变量和局部变量的区别 一…

力扣刷MySQL-第六弹(详细讲解)

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;力扣刷题讲解-MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出…

Maven error in opening zip file?maven源码debug定位问题jar包

文章目录 问题发现调试Maven1. 查看maven版本2. 下载对应版本的maven源码3. 打开maven源码&#xff0c;配置启动选项 启动maven debug模式进入maven 源码&#xff0c;打断点调试找jar包算账 已录制视频 视频连接 问题发现 最近使用maven分析jar包的时候遇到了一个很搞的问题。…

PSoc62™开发板之i2c通信

实验目的 使用模拟i2c接口读取温湿度气压模块BME280数据 实验准备 PSoc62™开发板温湿度气压模块BME280公母头杜邦线 板载资源 本次实验是通过模拟i2c时序的方式来进行通信&#xff0c;理论上可以有非常多的方式配置i2c引脚&#xff0c;不像硬件i2c那样芯片出厂引脚已经固…

Summary for Packaging and Assembly Technologies for Integrated Systems

目录 Introduction Type of Packages: Packaging of integrated devices Question 1: Question 2: Question 3: Question 4: Question 5: Report 1: Front-end and back-end process Question 6: Question 7: Inspection Process Report 2: Prototyping and mas…

【谭浩强C程序设计精讲 chap4】选择结构程序设计

文章目录 第4章 选择结构程序设计一、用 if 语句实现选择结构二、用 switch 语句实现多分支选择结构三、条件运算符和条件表达式 第4章 选择结构程序设计 一、用 if 语句实现选择结构 一般形式&#xff1a; if (表达式)  语句1 [ else  语句2 ] 其他形式&#xff0c;常用的…

web前端项目-3D台球游戏【附源码】

3D台球 【3D台球】这款游戏的操作简洁明了&#xff0c;玩家只需要简单的练习两分钟便能够掌握。玩家需要用鼠标控制击球的方向和力度&#xff0c;将白球打进洞中。每次进球后&#xff0c;玩家需要选择下一个要击打的球&#xff0c;直到所有的球都打进洞中。但要注意避免黑球进…

【Unity】URP报错Object reference not set to an instance of an object

使用URP之后&#xff0c;Unity报错&#xff1a;显示不正常 NullReferenceException: Object reference not set to an instance of an object UnityEngine.Rendering.Universal.UniversalAdditionalCameraData.get_cameraStack () (at Library/PackageCache/com.unity.render-p…

Flink实时数仓同步:拉链表实战详解

一、背景 在大数据领域&#xff0c;业务数据通常最初存储在关系型数据库&#xff0c;例如MySQL。然而&#xff0c;为了满足日常分析和报表等需求&#xff0c;大数据平台会采用多种不同的存储方式来容纳这些业务数据。这些存储方式包括离线仓库、实时仓库等&#xff0c;根据不同…

智能AI写作到底怎么样?这几款AI写作非常好用

近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术的快速发展已经渗透到各个领域&#xff0c;包括写作领域。AI写作软件通过模仿指定作家的风格和语言&#xff0c;能够生成高质量的文章。这种技术的出现引发了广泛的讨论和争议。本文将探讨AI写作的优点&#xff0c;并…

Windows给docker设置阿里源

windows环境搭建专栏&#x1f517;点击跳转 Windows系统的docker设置阿里源 文章目录 Windows系统的docker设置阿里源1.获得镜像加速器2.配置docker 由于我们生活在中国大陆&#xff0c;所以外网的访问总是那么慢又困难&#xff0c;用docker拉取几兆的小镜象还能忍受&#xff…

单元测试之Stub和Mock

实例 Analyze类会检查filename的长度&#xff0c;如果小于8&#xff0c;我们就会使用一个实现IWebService的类来记录错误. 我们需要给Analyze方法写单元测试。 public class LogAnalyzer {private IWebService service;private IEmailService email;public IWebService Serv…

软考十大管理领域49个过程开展频次总结

1、仅开展一次或仅在预定义时点开展的项目管理过程 序号 过程 过程组 说明 1 制定项目章程 启动 项目章程尽量在整个项目期间保持不变 2 制订项目管理计划 计划 各种管理(程序性)计划和项目基准尽量在整个项目期间保持不变 3 规划范围管理 除规划沟通管…

【微信小程序开发】环境介绍和基本使用

文章目录 前言1. 项目的基本组成结构1.1 JSON 配置文件的作用1.2 如何新建小程序页面1.3 修改项目首页1.4 WXML 模板1.5 WXSS 样式1.6 JS 逻辑交互 2. 宿主环境2.1 什么是宿主环境2.2 通信模型2.3 运行机制2.4 组件2.4.1 view 组件的基本使用&#xff1a;2.4.2 scroll-view 组件…