【PyTorch】PyTorch之Tensors索引切片篇

文章目录

  • 前言
  • 一、ARGWHERE
  • 二、CAT、CONCAT、CONCATENATE
  • 三、CHUNK
  • 四、GATHER
  • 五、MOVEDIM和MOVEAXIS
  • 六、PERMUTE
  • 七、RESHAPE
  • 八、SELECT
  • 九、SPLIT
  • 十、SQUEEZE
  • 十一、T
  • 十二、TAKE
  • 十三、TILE
  • 十四、TRANSPOSE
  • 十五、UNBIND
  • 十六、UNSQUEEZE
  • 十七、WHERE


前言

介绍常用的PyTorch之Tensors索引切片等


一、ARGWHERE

torch.argwhere(input) → Tensor
返回一个张量,其中包含输入张量中所有非零元素的索引。结果中的每一行都包含输入中一个非零元素的索引。结果按字典序排序,最后一个索引变化最快(C风格)。

如果输入具有n维,则生成的索引张量out的大小为(z×n),其中z是输入张量中非零元素的总数。

此函数类似于 NumPy 的 argwhere 函数。当输入位于 CUDA 上时,此函数会导致主机和设备的同步。
在这里插入图片描述

二、CAT、CONCAT、CONCATENATE

*torch.cat(tensors, dim=0, , out=None) → Tensor
Parameters:
tensors (sequence of Tensors) – any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.
dim (int, optional) – the dimension over which the tensors are concatenated
Keyword Arguments:
out (Tensor, optional) – the output tensor.

在给定维度上连接给定的 seq 张量序列。所有张量必须具有相同的形状(除了连接的维度之外)或为空。
torch.cat() 可以被看作是 torch.split() 和 torch.chunk() 的逆操作。
通过示例,可以更好地理解 torch.cat()。
torch.stack() 沿新维度连接给定的序列。
在这里插入图片描述
CONCAT和CONCATENATE是CAT的别名,操作相同。

三、CHUNK

torch.chunk(input, chunks, dim=0) → List of Tensors
Parameters:
input (Tensor) – the tensor to split
chunks (int) – number of chunks to return
dim (int) – dimension along which to split the tensor

尝试将张量分割成指定数量的块。每块都是输入张量的视图。不同于torch.tensor_split(),一个始终返回确切指定数量块的函数,此函数可能返回少于指定数量的块!
如果沿着给定的维度 dim 的张量大小可被 chunks 整除,则所有返回的块将具有相同的大小。如果沿着给定的维度 dim 的张量大小不能被 chunks 整除,则所有返回的块将具有相同的大小,除了最后一个。如果这样的划分不可能,此函数可能返回少于指定数量的块。
在这里插入图片描述

四、GATHER

*torch.gather(input, dim, index, , sparse_grad=False, out=None) → Tensor
Parameters:
input (Tensor) – the source tensor
dim (int) – the axis along which to index
index (LongTensor) – the indices of elements to gather
Keyword Arguments:
sparse_grad (bool, optional) – If True, gradient w.r.t. input will be a sparse tensor.
out (Tensor, optional) – the destination tensor

沿着由 dim 指定的轴收集数值。
对于 3-D 张量,输出由以下规定:
如果 dim == 0,则 out[i][j][k] = input[index[i][j][k]][j][k];
如果 dim == 1,则 out[i][j][k] = input[i][index[i][j][k]][k];
如果 dim == 2,则 out[i][j][k] = input[i][j][index[i][j][k]];

input 和 index 必须具有相同数量的维度。还要求对于所有维度 d != dim,index.size(d) <= input.size(d)。out 将具有与 index 相同的形状。请注意,input 和 index 不会相互广播。
如果有其他问题或需要进一步解释,请随时告诉我。我很乐意帮助你。
在这里插入图片描述

五、MOVEDIM和MOVEAXIS

torch.movedim(input, source, destination) → Tensor
Parameters:
input (Tensor) – the input tensor.
source (int or tuple of ints) – Original positions of the dims to move. These must be unique.
destination (int or tuple of ints) – Destination positions for each of the original dims. These must also be unique.

将输入张量中的维度从源位置移动到目标位置。
未明确移动的输入的其他维度保持在其原始顺序中,并出现在目标中未指定的位置。
在这里插入图片描述
MOVEAXIS是MOVEDIM的别名。

六、PERMUTE

torch.permute(input, dims) → Tensor
Parameters:
input (Tensor) – the input tensor.
dims (tuple of int) – The desired ordering of dimensions

返回原始张量输入的视图,对维度重新进行排列。
在这里插入图片描述

七、RESHAPE

torch.reshape(input, shape) → Tensor
Parameters:
input (Tensor) – the tensor to be reshaped
shape (tuple of int) – the new shape

返回一个与输入相同的数据和元素数量的张量,但具有指定的形状。在可能的情况下,返回的张量将是输入的视图。否则,它将是一个副本。具有连续内存布局和兼容步幅的输入可以在不复制的情况下重新形状,但不应依赖于复制与视图的行为。
请参阅 torch.Tensor.view(),了解何时可能返回视图。
单个维度可以为 -1,在这种情况下,它将从剩余维度和输入中的元素数量中推断出。
在这里插入图片描述

八、SELECT

torch.select(input, dim, index) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to slice
index (int) – the index to select with

沿着给定索引在选定的维度上对输入张量进行切片。此函数返回原始张量的视图,其中删除了给定的维度。
注意:
如果输入是稀疏张量,并且无法返回张量的视图,则会引发 RuntimeError 异常。在这种情况下,考虑使用 torch.select_copy() 函数。
select() 等同于切片。例如,tensor.select(0, index) 等同于 tensor[index],而 tensor.select(2, index) 等同于 tensor[:,:,index]。

九、SPLIT

torch.split(tensor, split_size_or_sections, dim=0)
Parameters:
tensor (Tensor) – tensor to split.
split_size_or_sections (int) or (list(int)) – size of a single chunk or list of sizes for each chunk
dim (int) – dimension along which to split the tensor.
Return type:
Tuple[Tensor, …]

将张量分割成块。每个块都是原始张量的视图。
如果 split_size_or_sections 是整数类型,则张量将被均匀分割成大小相等的块(如果可能的话)。如果沿着给定的维度 dim 的张量大小不能被 split_size 整除,最后一个块将更小。
如果 split_size_or_sections 是一个列表,则张量将根据列表中的元素在维度 dim 上分割为具有相应大小的块。
在这里插入图片描述

十、SQUEEZE

torch.squeeze(input, dim=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints, optional) –if given, the input will be squeezed
only in the specified dimensions.

返回一个将输入张量中所有指定维度大小为1的维度移除的张量。
例如,如果输入的形状为:
(A×1×B×C×1×D)
那么 input.squeeze() 的形状将为:
(A×B×C×D)
当指定了 dim 参数时,squeeze 操作只在给定的维度中执行。如果输入的形状为:
(A×1×B)
那么 squeeze(input, 0) 将保持张量不变,但 squeeze(input, 1) 将使张量的形状变为:
(A×B)
注意:
返回的张量与输入张量共享存储,因此更改其中一个的内容将更改另一个的内容。
警告:
如果张量具有大小为1的批处理维度,那么 squeeze(input) 也会删除批处理维度,这可能导致意外的错误。考虑仅指定要挤压的维度。
在这里插入图片描述

十一、T

torch.t(input) → Tensor
Parameters:
input (Tensor) – the input tensor.

期望输入为 <= 2-D 张量,并转置维度 0 和 1。
0-D 和 1-D 张量保持不变。当输入为 2-D 张量时,这等效于 transpose(input, 0, 1)。
在这里插入图片描述

十二、TAKE

torch.take(input, index) → Tensor
Parameters:
input (Tensor) – the input tensor.
index (LongTensor) – the indices into tensor

返回一个新的张量,该张量包含输入张量在给定索引处的元素。输入张量被视为一个 1-D 张量。结果的形状与索引相同。
在这里插入图片描述

十三、TILE

torch.tile(input, dims) → Tensor
Parameters:
input (Tensor) – the tensor whose elements to repeat.
dims (tuple) – the number of repetitions per dimension.

通过重复输入的元素构造一个张量。dims 参数指定每个维度的重复次数。
如果 dims 指定的维度少于输入的维度,则在 dims 前面添加 1 直到所有维度都被指定。例如,如果输入的形状为 (8, 6, 4, 2),而 dims 为 (2, 2),那么 dims 就被视为 (1, 1, 2, 2)。
类似地,如果输入的维度少于 dims 指定的维度,则将输入视为在维度零处插入 1,直到具有与 dims 指定的维度相同。例如,如果输入的形状为 (4, 2),而 dims 为 (3, 3, 2, 2),那么输入就被视为具有形状 (1, 1, 4, 2)。
注意:
这个函数类似于 NumPy 的 tile 函数。
在这里插入图片描述

十四、TRANSPOSE

torch.transpose(input, dim0, dim1) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim0 (int) – the first dimension to be transposed
dim1 (int) – the second dimension to be transposed

返回一个张量,该张量是输入的转置版本。给定的维度 dim0 和 dim1 被交换。
如果输入是一个分步张量(strided tensor),那么生成的输出张量与输入张量共享其基础存储,因此更改其中一个的内容将更改另一个的内容。
如果输入是一个稀疏张量,则生成的输出张量与输入张量不共享基础存储。
如果输入是具有压缩布局(SparseCSR、SparseBSR、SparseCSC 或 SparseBSC)的稀疏张量,则参数 dim0 和 dim1 必须同时是批处理维度或同时是稀疏维度。稀疏张量的批处理维度是稀疏维度之前的维度。
注意:
交换 SparseCSR 或 SparseCSC 布局张量的稀疏维度将导致布局在两种选项之间变化。类似地,转置 SparseBSR 或 SparseBSC 布局张量的稀疏维度将生成具有相反布局的结果。在这里插入图片描述

十五、UNBIND

torch.unbind(input, dim=0) → seq
Parameters:
input (Tensor) – the tensor to unbind
dim (int) – dimension to remove

移除张量的一个维度。返回沿着给定维度的所有切片的元组,这些切片已经没有该维度。
在这里插入图片描述

十六、UNSQUEEZE

torch.unsqueeze(input, dim) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int) – the index at which to insert the singleton dimension

返回一个在指定位置插入大小为一的维度的新张量。
返回的张量与此张量共享相同的基础数据。
可以使用范围在 [-input.dim() - 1, input.dim() + 1) 内的 dim 值。负的 dim 将对应于在 dim = dim + input.dim() + 1 处应用 unsqueeze()。

在这里插入图片描述

十七、WHERE

*torch.where(condition, input, other, , out=None) → Tensor
Parameters:
condition (BoolTensor) – When True (nonzero), yield input, otherwise yield other
input (Tensor or Scalar) – value (if input is a scalar) or values selected at indices where condition is True
other (Tensor or Scalar) – value (if other is a scalar) or values selected at indices where condition is False
Keyword Arguments:
out (Tensor, optional) – the output tensor.
Returns:
A tensor of shape equal to the broadcasted shape of condition, input, other
Return type:
Tensor

返回从输入或其他张量中选择的元素的张量,取决于条件。
该操作的定义为:
在这里插入图片描述
张量 condition、input 和 other 必须是可广播的。torch.where(condition) → tuple of LongTensor 与 torch.nonzero(condition, as_tuple=True) 完全相同
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第15届蓝桥杯嵌入式省赛准备第二天总结笔记(使用STM32cubeMX创建hal库工程+按键输入)

一.查看电路图 按键是使用的PB0,PB1,PB2,PA0四个引脚&#xff0c;然后使用CubeMX配置引脚&#xff0c;4个脚都配置为输入模式和上拉。 程序生成之后把不用的删掉&#xff0c;需要的留下&#xff0c;这里我把函数名改了。 然后写按键扫描读取程序&#xff0c;这里参考的正点原子…

Vue中ElementUI结合transform使用时,修复el-select弹框定位不准确问题

在大屏开发中&#xff0c;比如将1920*1080放到更大像素&#xff08;3500*2400&#xff09;大屏上演示&#xff0c;此时需要使用到transform来对页面进行缩放&#xff0c;但是此时发现弹框定位出错问题&#xff0c;无法准备定位到实际位置。之前写过一篇讲解的是ElementUI中的&l…

【Android】自定义View onDraw()方法会调用两次

问题 自定义了View后&#xff0c;在构造函数中设置画笔颜色&#xff0c;发现它没起效&#xff0c;但是在onDraw()里设置颜色就会起效&#xff0c;出问题的代码如下&#xff1a; public RoundSeekbarView(Context context, Nullable AttributeSet attrs) {super(context, attrs…

视频美颜SDK与人工智能的结合:技术突破与挑战

本篇文章&#xff0c;小编将与大家共同探讨美颜SDK与人工智能结合背后的技术原理、创新应用以及面临的挑战。 一、技术原理&#xff1a;人工智能在美颜中的应用 视频美颜SDK通过整合深度学习和计算机视觉技术&#xff0c;能够更准确地识别人脸特征、肤色、表情等信息&#xff…

深入理解傅里叶变换

目录 1. 什么是傅里叶变换 2. 为什么要分解为正弦波的叠加参考资料 1. 什么是傅里叶变换 高等数学中一般是从周期函数的傅里叶级数开始介绍的&#xff0c;这里也不例外。 简单的说&#xff0c;从高中我们就学过一个理想的波可以用三角函数来描述&#xff0c;但是实际上的波可…

MAC iterm 显示git分支名

要在Mac上的iTerm中显示Git分支名&#xff0c;您需要使用一个名为“Oh My Zsh”的插件。Oh My Zsh是一个流行的Zsh框架&#xff0c;它提供了许多有用的功能和插件&#xff0c;包括在终端中显示Git分支名。 以下是在iTerm中显示Git分支名的步骤&#xff1a; 1、安装Oh My Zsh&…

Git入门详细教程

一、Git概述&#x1f387; Git官网 Git是一个开源的分布式版本控制系统&#xff0c;用于跟踪文件的变化和协作开发。它允许多个开发者在同一项目中共同工作&#xff0c;并能够有效地管理代码的版本和历史记录。Git可以帮助开发团队更好地协作&#xff0c;追踪代码变更&#xf…

什么是比特币?

比特币 比特币 &#xff08;英语&#xff1a;Bitcoin&#xff0c;缩写&#xff1a;BTC &#xff09;是一种基于 去中心化&#xff0c;采用 点对点网络&#xff0c;开放源代码&#xff0c;以 区块链 作为底层技术的 加密货币。比特币由 中本聪&#xff08;Satoshi Nakamoto&…

Nginx前后端分离部署springboot和vue项目

Nginx前后端分离部署springboot和vue项目&#xff0c;其实用的比较多&#xff0c;有的小伙伴对其原理和配置还一知半解&#xff0c;现在就科普一下&#xff1a; 1、准备后端项目 后端工程无论是微服务还是单体&#xff0c;一般最终都是jar启动&#xff0c;关键点就是把后端服…

go mock模拟接口的实现

简介 mock翻译过来是‘模拟’的意思&#xff0c;也就是模拟接口返回的信息&#xff0c;用已有的信息替换接口返回的信息&#xff0c;从而提供仿真环境&#xff0c;实现模拟数据下的功能测试&#xff1b; 在多人合作编码时&#xff0c;你写的一个函数func DoSth(People)用到了别…

【备战蓝桥杯】图论重点 敲黑板啦!

蓝桥杯备赛 | 洛谷做题打卡day11 文章目录 蓝桥杯备赛 | 洛谷做题打卡day11杂务题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 题解代码我的一些话 杂务 题目描述 John 的农场在给奶牛挤奶前有很多杂务要完成&#xff0c;每一项杂务都需要一定的时间来完成它。比如&a…

c#让三个线程按照顺序执行

现实的例子 三个线程都是while&#xff08;true&#xff09;的循环体 A线程&#xff1a;采集数据 B线程&#xff1a;画曲线 C线程&#xff1a;存数据库 AutoResetEvent类 AutoResetEvent 是一个线程同步的类&#xff0c;它提供了一种机制&#xff0c;允许一个或多个线程等待直…

Unity之四元数

欧拉角 万向节死锁 四元数是什么 Unity中四元数的初始化 四元数和欧拉角的互相转换 补充 四元数相乘代表旋转四元数

Linux Shell脚本入门

目录 介绍 编写格式与执行方式 Shell脚本文件编写规范 脚本文件后缀名规范 首行格式规范 注释格式 shell脚本HelloWord入门案例 需求 效果 实现步骤 脚本文件的常用执行三种方式 介绍 3种方式的区别 小结 多命令处理 Shell变量 环境变量 目标 Shell变量的介绍 变量类型 系统环境…

计算机毕业设计 基于SpringBoot的红色革命文物征集管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

学习JavaEE的日子 day12 构造方法 类的制作

Day12 需求&#xff1a;创建人类的对象&#xff0c;并操作对象 分析&#xff1a; 人类 - Person 属性&#xff1a;name、sex、age 方法&#xff1a;eat、sleep 场景&#xff1a;创建多个对象&#xff0c;去操作对象 //测试类&#xff1a;该类中有main方法&#xff0c;测试我们写…

F - Digital Roots HUOJ

题目 The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the pro…

让你的Pandas代码快得离谱的两个技巧

如果你曾经使用过Pandas处理表格数据&#xff0c;你可能会熟悉导入数据、清洗和转换的过程&#xff0c;然后将其用作模型的输入。然而&#xff0c;当你需要扩展和将代码投入生产时&#xff0c;你的Pandas管道很可能开始崩溃并运行缓慢。在这篇文章中&#xff0c;笔者将分享2个技…

项目管理十大知识领域之项目质量管理

一、项目质量管理概述 项目质量管理是指通过计划、组织、控制和监督项目过程&#xff0c;以确保项目满足特定的质量要求的一系列活动。项目质量管理是整个项目管理体系中不可或缺的一部分&#xff0c;它涉及到对项目所涉及的产品或服务的质量进行规划、控制和保证的过程。在项…

【面试】测试/测开(ING3)

190. 栈和堆在内存管理上的区别 栈 1&#xff09; 栈是由系统自动分配和回收的内存。 2&#xff09;栈的存储地址是由高地址向低地址扩展的。 3&#xff09;栈是一个先进后出的结构。 4&#xff09;栈的空间大小是一个在编译时确定常数&#xff0c;即栈的大小是有限制的&#x…