基于YOLOv8深度学习的智能肺炎诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:智能肺炎诊断系统可通过自动分析病人X射线肺部图像,快速地识别出肺炎征状。这项技术可以提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度。本文基于YOLOv8深度学习框架,通过5856张图片,训练了一个进行智能肺炎诊断的识别模型,可通过病人X射线肺部图像判断病人是否患有肺炎。并基于此模型开发了一款带UI界面的智能肺炎诊断系统,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

智能肺炎诊断系统运用了先进的YOLOv8深度学习算法,它可通过自动分析病人X射线肺部图像,快速地识别出肺炎征状。这项技术的重要性体现在提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度,特别是在公共卫生事件和疫情大流行期间。

智能肺炎诊断系统的应用场景主要包括以下几个方面:
医院急诊部门:快速筛查病患是否患有肺炎,缩短等待时间,做出迅速精准的治疗决策。
农村和偏远地区医疗中心:在专业医疗资源不足的地区,提供高质量的诊断服务,减少严重病情的漏诊率。
移动医疗设施和野战医院:在流动性场合或临时医疗设置中,提供即时的肺炎检测能力。
公共卫生监测和防控:对于流感季节或肺炎疫情防控,智能诊断系统可以作为一个关键的监测和控制工具。
长期照护设施和养老院:在高风险群体中,定期监控患者的肺部健康状况,及时发现潜在的呼吸系统问题。
总结而言,智能肺炎诊断系统的应用可以极大提高医疗系统响应肺炎以及其他肺部疾病的能力。这不仅对提高个体患者的医疗体验和治疗结果有好处,同时也增强了公共卫生系统面对流行性疾病挑战时的整体应对能力,尤其在资源有限或紧急情况中,它的价值更为凸显。

博主通过搜集病人X射线肺部的相关数据图片,根据YOLOv8的深度学习技术,基于python与Pyqt5开发了一款界面简洁的智能肺炎诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可通过病人X射线肺部图像判断病人是否患有肺炎,分为肺炎健康两种状态;
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的X射线肺部图像数据集共包含5856张图片,分为2个类别,分别是:['肺炎','健康']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':model.train(data='datasets/Data', epochs=300, batch=4)# results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过图片准确率曲线图我们可以发现,该模型的最高准确率约为0.88,结果还是很不错的。
在这里插入图片描述

在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IM-0003-0001.jpeg"# 加载模型
model = YOLO(path, task='classify')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能肺炎诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,回复【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能肺炎诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633198.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS stream 9配置网卡

CentOS stream9的网卡和centos 7的配置路径:/etc/sysconfig/network-scripts/ifcfg-ens32不一样。 CentOS stream 9的网卡路径: /etc/NetworkManager/system-connections/ens32.nmconnection 方法一: [connection] idens32 uuid426b60a4-4…

2024 CKA 题库 | 11、创建 PVC

不等更新题库 文章目录 11、创建 PVC题目:考点:参考链接:解答:更换 context创建 pvc创建 pod修改 pvc 并记录 11、创建 PVC 题目: 设置配置环境: [candidatenode-1] $ kubectl config use-context ok8sTask 创建一个新的 PersistentVolumeClaim&#x…

SG-9101CGA(汽车+125°C可编程晶体振荡器)

SG-9101CGA是用于汽车CMOS输出的可编程晶体振荡器,彩用2.5 x 2.0 (mm)封装,0.67 MHz至170 MHz频率范围、工作温度范围为-40℃~125℃,符合车规级晶振,无铅,绿色环保,满足汽车工业标准,电源电压范…

【linux】粘滞位.yum

粘滞位 1.为什么我们普通用户可以删掉别人的文件(包括root)?合理吗? 2.删除一个文件和目标文件有关系吗? 没关系,和所处的目录有关系。 1.我们先以root身份创建一个目录,接着在这个目录下创建一个文件 2…

噪声的产生机制和来源

噪声广泛存,噪声按照噪声携带能量的强弱分为功率型噪声和信号型噪声,功率型噪声持续时间短,能量强,对设备的寿命具有很大的影响,而信号型噪声顾名思义来源于信号且作用于信号,本节简述噪声的产生机理和来源…

QtAV:基于Qt和FFmpeg的跨平台高性能音视频播放框架

目录 一.简介 1.特性 2.支持的平台 3.简单易用的接口 二.编译 1.下载依赖包 2.开始编译 2.1克隆 2.2修改配置文件 2.3编译 三.试用 一.简介 官网地址:http://www.qtav.org/ Github地址:https://github.com/wang-bin/QtAV 1.特性 ●支持大部分…

Windows 开启卓越性能模式

在powershell命令行中输入下面代码即可: powercfg -duplicatescheme e9a42b02-d5df-448d-aa00-03f14749eb61

机器学习--人工智能概述

人工智能概述 入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程机器学习定义以及应用场景监督学习,无监督学习监督学习中的分类、回归特点知道机器学习…

Producer源码解读

Producer源码解读 在 Kafka 中, 我们把产生消息的一方称为 Producer 即 生产者, 它是 Kafka 的核心组件之一, 也是消息的来源所在。它的主要功能是将客户端的请求打包封装发送到 kafka 集群的某个 Topic 的某个分区上。那么这些生产者产生的消息是怎么传到 Kafka 服务端的呢&a…

TypeScript依赖注入框架Typedi的使用、原理、源码解读

简介 typedi是一个基于TS的装饰器和reflect-metadata的依赖注入轻量级框架,使用简单易懂,方便拓展。 使用typedi的前提是安装reflect-metadata,并在项目的入口文件的第一行中声明import ‘reflect-metadata’,这样就会在原生的R…

【图解数据结构】深度解析时间复杂度与空间复杂度的典型问题

🌈个人主页:聆风吟 🔥系列专栏:图解数据结构、算法模板 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 一. ⛳️上期回顾二. ⛳️常见时间复杂度计算举例1️⃣实例一2️⃣实例二3️⃣实例三4️⃣实例四5…

FPGA引脚选择(Select IO)--认知1

主要考虑功能角度(速度,电平匹配,内部程序编写)去找研究芯片内部资源 1. 关键字 HP I/O Banks, High performance The HP I/O banks are deisgned to meet the performance requirements of high-speed memory and other chip-to-…

参照oracle按名称排序,用js在前端对附件封装排序方法

此前因客户需求需要附件按照名称排序 而后台无法对单个文件夹做单独处理。虽可以在每次点击之后重新调用接口,再组装数据,但效率太低,且无须存储,而存储在当前文件夹的排序方法也需要更新。索性自己写了一个通用的方法。经测试排序…

彩超框架EchoSight开发日志记录

EchoSight开发记录 蒋志强 我会不定期的更新 开发进展。最近更新进展于2024年1月15日 1.背景 由于某些不可抗逆的原因,离开了以前的彩超大厂,竞业在家,难得有空闲的时间。我计划利用这段时间 自己独立 从零开始 搭建一套 彩超系统的软件工…

【陈老板赠书活动 - 22期】- 人工智能(第三版)

陈老老老板🧙‍♂️ 👮‍♂️本文专栏:赠书活动专栏(为大家争取的福利,免费送书) 🤴本文简述:活就像海洋,只有意志坚强的人,才能到达彼岸。 👳‍♂️上一篇文章&#xff…

浅谈CPU进入保护模式的方法

看程序要想思路不乱,最重要的就是要抓到程序的主线,不要被一些只是用来保护的代码打乱。如何抓到主线呢?比较法学习代码是比较有效的,比如对于CPU如何进入保护模式的理解。 不同的操作系统作者有自己的方法,代码看起来…

高级编程JavaScript中的数据类型?存储上能有什么差别?

在JavaScript中,我们可以分成两种类型: 基本类型复杂类型 两种类型的区别是:存储位置不同 一、基本类型 基本类型主要为以下6种: NumberStringBooleanUndefinednullsymbol Number 数值最常见的整数类型格式则为十进制&…

Liunx:线程控制

目录 创建线程:pthread_create(); 线程等待:pthread_join(); 线程退出:pthread_exit(); 线程取消:pthread_cancel() 说线程的时候说过,liunx没有选择单独定义线程的数据结构和适配算法,而是用轻量级进程…

【计算机网络】OSI七层模型与TCP/IP四层模型的对应与各层介绍

1 OSI七层模型与TCP/IP四层模型对应 2 OSI七层模型介绍 OSI(Open Systems Interconnection)模型是一个由国际标准化组织(ISO)定义的七层网络体系结构,用于描述计算机网络中的通信协议。每一层都有特定的功能&#xff…

基于arcgis js api 4.x开发点聚合效果

一、代码 <html> <head><meta charset"utf-8" /><meta name"viewport"content"initial-scale1,maximum-scale1,user-scalableno" /><title>Build a custom layer view using deck.gl | Sample | ArcGIS API fo…