【论文阅读】Deep Graph Contrastive Representation Learning

目录

  • 0、基本信息
  • 1、研究动机
  • 2、创新点
  • 3、方法论
    • 3.1、整体框架及算法流程
    • 3.2、Corruption函数的具体实现
      • 3.2.1、删除边(RE)
      • 3.2.2、特征掩盖(MF)
    • 3.3、[编码器](https://blog.csdn.net/qq_44426403/article/details/135443921)的设计
      • 3.3.1、直推式学习
    • 3.4、损失函数的定义
    • 3.5、评估
    • 3.6、理论动机
      • 3.6.1、最大化目标函数等价于最大化互信息的下界
      • 3.6.2、三重损失
    • 3.7、实验参数设置
  • 4、代码实现
    • 4.1、RE and MF
    • 4.2、encorder
    • 4.3、GRACE
    • 4.4、loss

0、基本信息

  • 作者:Yanqiao Zhu Yichen Xu
  • 文章链接:Deep Graph Contrastive Representation Learning
  • 代码链接:Deep Graph Contrastive Representation Learning

1、研究动机

  • 现实世界中,图的标签数量较少,尽管GNNs蓬勃发展,但是训练模型时标签的可用性问题也越来越受到关心。

  • 传统的无监督图表征学习方法,例如DeepWalk和node2vec,以牺牲结构信息为代价过度强调邻近信息

  • 基于局部-全局互信息最大化框架的[[DGI]]模型,要求readout函数是单射的具有局限性,并且对节点特征随机排列,当特征矩阵稀疏时,不足以生成不同的上下文信息,导致难以学习对比目标

 本文提出的GRACE模型:首先,通过移除边和掩盖特征生成两个视图,然后最大化两个视图中结点嵌入的一致性。

2、创新点

  • 结点级图对比学习框架
  • 提出新的Corruption Function:删除边和特征掩盖

3、方法论

3.1、整体框架及算法流程

  • 首先,通过Corruption函数在原始图 G G G的基础上生成两个视图 G ~ 1 \tilde{G}_1 G~1 G ~ 2 \tilde{G}_2 G~2
  • 其次,通过编码器函数 f f f,生成两个视图的结点嵌入表征, U = f ( G ~ 1 ) U=f(\tilde{G}_1) U=f(G~1) V = f ( G ~ 2 ) V=f(\tilde{G}_2) V=f(G~2)
  • 计算对比目标函数 J \mathcal{J} J
  • 通过随机梯度下降更新参数;

GRACE的整体框架如下图所示:
在这里插入图片描述

3.2、Corruption函数的具体实现

 视图的生成是对比学习方法的关键组成部分,不同视图为每个节点提供不同的上下文,本文依赖不同视图中结点嵌入之间对比的对比方法,作者在结构和属性两个层次上破坏原始图,这为模型构建了不同的节点上下文,分别是删除边和掩蔽结点特征。

3.2.1、删除边(RE)

 随机删除原图中的部分边。
 首先,采样一个随机掩盖矩阵 R ~ ∈ { 0 , 1 } N × N \tilde{R}\in \{0,1\}^{N \times N} R~{0,1}N×N,矩阵中的每个元素服从伯努利分布,即 R ~ ∼ B ( 1 − p r ) \tilde{R}\sim \mathcal{B}(1-p_r) R~B(1pr) p r p_r pr是每条边被移除的概率;其次,用得到地掩盖矩阵与原始邻接矩阵做Hadamard积,最终得到的邻接矩阵为:
A ~ = A ∘ R ~ \tilde{A}=A\circ \tilde{R} A~=AR~
注意,上式为Hadamard积。

3.2.2、特征掩盖(MF)

 再结点特征中用零随机地掩盖部分特征。
 首先,采样一个随机向量 m ~ ∈ { 0 , 1 } F \tilde{m}\in\{0,1\}^F m~{0,1}F,向量的每个元素来自于伯努利分布,即 m ~ ∼ B ( 1 − p m ) \tilde{m}\sim \mathcal{B}(1-p_m) m~B(1pm) p r p_r pr是元素被掩盖的概率;其次,用得到地掩盖向量与原始特征做Hadamard积,最终得到的特征矩阵为:
X ~ = [ x 1 ∘ m ~ ; x 2 ∘ m ~ ; . . . ; x N ∘ m ~ ; ] \tilde{X}=[x_1 \circ\tilde{m};x_2 \circ\tilde{m};...;x_N \circ\tilde{m};] X~=[x1m~;x2m~;...;xNm~;]
注意, [ . ; . ] [.;.] [.;.]是连接运算符。

3.3、编码器的设计

 针对不同任务,transductive learning、inductive learning on large graphs和inductive learning on multiple graphs,设计不同的编码器。这里仅仅列出transductive learning的编码器设计,其他任务编码器的设计请阅读原文4.2节实验设置

3.3.1、直推式学习

 直推式学习采用了一个两层的GCN作为编码器。编码器 f f f的形式如下:
G C i ( X , A ) = σ ( D ^ 1 2 A ^ D ^ 1 2 X W i ) GC_i(X,A)=\sigma(\hat{D}^{\frac{1}{2}}\hat{A}\hat{D}^{\frac{1}{2}}XW_i) GCi(X,A)=σ(D^21A^D^21XWi)
f ( X , A ) = G C 2 ( G C 1 ( X , A ) , A ) f(X,A)=GC_2(GC_1(X,A),A) f(X,A)=GC2(GC1(X,A),A)
其中, A ^ = A + I \hat{A}=A+I A^=A+I D ^ \hat{D} D^ A ^ \hat{A} A^的度矩阵, σ ( . ) \sigma(.) σ(.)为激活函数,例如 R e L U ( . ) = m a x ( 0 , . ) \mathrm{ReLU}(.)=max(0,.) ReLU(.)=max(0,.) W i W_i Wi为可训练的权重矩阵。

3.4、损失函数的定义

 对比目标,即判别器,是将两个来自不同视图相同结点的嵌入与其他结点区分开来,最大化嵌入之间的结点级的一致性。

 对于任意一个结点 v i v_i vi,在第一个视图中的嵌入为 u i \mathbf{u}_i ui,被视作锚;在另外一个视图中的嵌入为 v i \mathbf{v}_i vi,形成正样本,两个视图中出 v i v_i vi之外的结点嵌入被视为负样本。

 简单而言,正样本:同一结点在不同视图的嵌入被视作正样本对;负样本包含两类:(1)intra-view:同一视图中的不同结点对(2)inter-view:不同视图中的不同结点对。

 判别函数定义为 θ ( u , v ) = s ( g ( u ) , g ( v ) ) \theta(u,v)=s(g(u),g(v)) θ(u,v)=s(g(u),g(v)) s s s为cosine相似度,g为非线性映射,例如两层的MLP。

综上所述,目标函数定义为:

ℓ ( u i , v i ) = log ⁡ e θ ( u i , v i ) / τ e θ ( u i , v i ) / τ ⏟ the positive pair + ∑ k = 1 N 1 [ k ≠ i ] e θ ( u i , v k ) / τ ⏟ inter-view negaive pairs + ∑ k = 1 N 1 [ k ≠ i ] e θ ( u i , u k ) / τ ⏟ intra-view negative pairs \ell(\boldsymbol{u}_i,\boldsymbol{v}_i)=\log\frac{e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_i)/\tau}}{\underbrace{e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_i)/\tau}}_{\text{the positive pair}}+\underbrace{\sum _ { k = 1 }^N\mathbb{1}_{[k\neq i]}e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_k)/\tau}}_{\text{inter-view negaive pairs}}+\underbrace{\sum _ { k = 1 }^N\mathbb{1}_{[k\neq i]}e^{\theta(\boldsymbol{u}_i,\boldsymbol{u}_k)/\tau}}_{\text{intra-view negative pairs}}} (ui,vi)=logthe positive pair eθ(ui,vi)/τ+inter-view negaive pairs k=1N1[k=i]eθ(ui,vk)/τ+intra-view negative pairs k=1N1[k=i]eθ(ui,uk)/τeθ(ui,vi)/τ

其中, 1 [ k ≠ i ] ∈ { 0 , 1 } \mathbb{1}_{[k\neq i]}\in\{0,1\} 1[k=i]{0,1}是一个指示函数,当且仅当 k ≠ i k \neq i k=i时定于1。两个视图是对称的,另一个视图定义类似 ℓ ( v i , u i ) \ell(\boldsymbol{v}_i,\boldsymbol{u}_i) (vi,ui),最后,要最大化的总体目标被定义为:

J = 1 2 N ∑ i = 1 N [ ℓ ( u i , v i ) + ℓ ( v i , u i ) ] \mathcal{J}=\dfrac{1}{2N}\sum_{i=1}^N\left[\ell(\boldsymbol{u}_i,\boldsymbol{v}_i)+\ell(\boldsymbol{v}_i,\boldsymbol{u}_i)\right] J=2N1i=1N[(ui,vi)+(vi,ui)]

3.5、评估

 类似于DGI中的线性评估方案,模型首先以无监督的方式训练,得到的嵌入被用来训练逻辑回归分类器并做测试。

3.6、理论动机

3.6.1、最大化目标函数等价于最大化互信息的下界

 定理1说明了目标函数 J \mathcal{J} J是InfoNCE目标函数的一个下界,而InfoNCE评估器是MI(即互信息)的下界,所以 J ≤ I ( X ; U , V ) \mathcal{J} \le I(X;U,V) JI(X;U,V)
所以,最大化目标函数 J \mathcal{J} J等价于最大化输入节点特征和学习节点表示之间的互信息 I ( X ; U , V ) I(X;U,V) I(X;U,V)的下界

3.6.2、三重损失

 定理2说明了最小化目标函数与最大化三重损失一致。更详细的证明请看原文。

triplet Loss是深度学习中的一种损失函数,用于训练差异性较小的样本,如人脸等。在人脸识别领域,triplet loss常被用来提取人脸的embedding。 输入数据是一个三元组,包括锚(Anchor)例、正(Positive)例、负(Negative)例,通过优化锚示例与正示例的距离小于锚示例与负示例的距离,实现样本的相似性计算。

3.7、实验参数设置

Dataset p m , 1 p_{m,1} pm,1 p m , 2 p_{m,2} pm,2 p r , 1 p_{r,1} pr,1 p r , 2 p_{r,2} pr,2lrwdepochhidfeatactivation
Cora0.30.40.20.40.0051e-5200128ReLU
Citeseer0.30.20.20.00.0011e-5200256PReLU
Pubmed0.00.20.40.10.0011e-51500256ReLU

4、代码实现

完整代码见
链接:https://pan.baidu.com/s/1g9Rhe1EjxBZ0dFgOfy3CSg
提取码:6666

4.1、RE and MF

from dgl.transforms import DropEdge
#RE
#随机删除边——使用dgl内建库DropEdge
#MF
#随机掩盖特征
def drop_feature(x, drop_prob):drop_masks=[]for i in range(x.shape[0]):drop_mask = torch.empty(size= (x.size(1),) ,dtype=torch.float32,device=x.device).uniform_(0, 1) < drop_probdrop_masks.append(drop_mask)x = x.clone()for i,e in enumerate(drop_masks):x[i,e] = 0return x

4.2、encorder

import dgl
import torch.nn as nn
from dgl.nn.pytorch import GraphConv
from model.GCNLayer import GCNLayerclass Encoder(nn.Module):def __init__(self, infeat: int, outfeat: int, act_func,base_model=GraphConv, k: int = 2):super(Encoder, self).__init__()self.base_model = base_modelassert k >= 2self.k = kself.convs = nn.ModuleList()self.convs.append(base_model(infeat, 2 * outfeat))for _ in range(1, k-1):self.convs.append(base_model(2 * outfeat, 2 * outfeat))self.convs.append(base_model(2 * outfeat, outfeat))self.act_func = act_funcdef forward(self, g, x ):#g = dgl.add_self_loop(g)for i in range(self.k):x = self.act_func(self.convs[i](g,x))return x

4.3、GRACE

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from dgl.nn.pytorch import GraphConv
from model.encoder import Encoder
class GRACE(nn.Module):def __init__(self,infeat,hidfeat,act_func,k=2) -> None:super(GRACE,self).__init__()self.encoder = Encoder(infeat,hidfeat,act_func,base_model=GraphConv,k=k)def forward(self,g,x):z =self.encoder(g,x)return z

4.4、loss

import torch
import torch.nn as nn
import torch.nn.functional as F
class LossFunc(nn.Module):def __init__(self, infeat,hidfeat,outfeat,tau) -> None:super(LossFunc,self).__init__()self.tau = tauself.layer1 = nn.Linear(infeat,hidfeat)self.layer2 = nn.Linear(hidfeat,outfeat)def projection(self,x):x = F.elu(self.layer1(x))x = self.layer2(x)return xdef sim(self,x,y):x = F.normalize(x)y = F.normalize(y)return torch.mm(x, y.t())def sim_loss(self,h1,h2):f = lambda x : torch.exp(x/self.tau)#exp(\theta(u_i,u_j)/tau)intra_sim = f(self.sim(h1,h1))#exp(\theta(u_i,v_j)/tau)inter_sim = f(self.sim(h1,h2))return -torch.log(inter_sim.diag() / (intra_sim.sum(1) + inter_sim.sum(1) - intra_sim.diag()))def forward(self,u,v):h1 = self.projection(u)h2 = self.projection(v)loss1 = self.sim_loss(h1,h2)loss2 = self.sim_loss(h2,h1)loss_sum = (loss1 + loss2) * 0.5res = loss_sum.mean()return res

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/630809.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

借用GitHub将typora图片文件快速上传CSDN

前情概要 众所周知&#xff0c;程序员大佬们喜欢用typora软件写代码笔记&#xff0c;写了很多笔记想要放到CSDN上给其他大佬分享&#xff0c;但是在往csdn上搬运的时候&#xff0c;图片总是上传出错&#xff0c;一张一张搞有很麻烦&#xff0c;咋如何搞&#xff1f; 废话不多…

muduo网络库剖析——监听者EpollPoller类

muduo网络库剖析——监听者EpollPoller类 前情从muduo到my_muduo 概要epoll原理解析epoll提供的接口epoll的触发模式epoll实现多路复用 框架与细节成员函数使用方法 源码结尾 前情 从muduo到my_muduo 作为一个宏大的、功能健全的muduo库&#xff0c;考虑的肯定是众多情况是否…

SpringBoot 更新业务场景下,如何区分null是清空属性值 还是null为vo属性默认值?

先看歧义现象 值为null 未传递此属性 所以此时如何区分null 时传递进来的的null&#xff0c;还是属性的默认值null? 引入方案 引入过滤器&#xff0c;中间截获requestBodyData并保存到HttpServletRequest&#xff0c;业务层从HttpServletRequest 获取到requestBodyData辅…

LaTeX 多栏文档 Multiple columns如何插入图片并修改样式

在今天写报告的时候用到了 latex 的多栏列表&#xff0c;插入图片的时候感觉很无助 如果不喜欢让Latex自动安排图片位置&#xff0c;可以使用float包&#xff0c;然后可以使用\begin{figure}[H]。 记得提前导入这个包 \usepackage{float} 为了让我的图片的caption居中&#xf…

市面上常见硬盘分析及对比

固态硬盘 vs. 机械硬盘对比&#xff1a; 工作原理&#xff1a; 固态硬盘(SSD)&#xff1a; 使用非易失性存储器&#xff08;NAND闪存&#xff09;来存储数据&#xff0c;通过电子方式读写。机械硬盘(HDD)&#xff1a; 使用旋转的磁盘片和移动的磁头进行数据读写&#xff0c;依赖…

django电影推荐系统

电影推荐 启动 ./bin/pycharm.shdjango-admin startproject movie_recommendation_projectcd movie_recommendation_project/python manage.py movie_recommendation_apppython manage.py startapp movle_recommendation_applspython manage.py runserver Using the URLconf d…

Python多线程爬虫——数据分析项目实现详解

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 ChatGPT体验地址 文章目录 前言爬虫获取cookie网站爬取与启动CSDN爬虫爬虫启动将爬取内容存到文件中 多线程爬虫选择要爬取的用户 线程池 爬虫 爬虫是指一种自动化程序&#xff0c;能够模…

Kylin 安装novnc 远程访问

noVNC可以使用浏览器直接访问服务器&#xff0c;而不需要使用VNC客户端。 1.初始环境 关闭防火墙或允许IP访问本机 2.安装依赖 dnf install -y tigervnc-server git 3.git下载novnc git clone https://github.com/novnc/noVNC.git 4.配置信任证书 openssl req -new -x509 …

RabbitMQ使用篇

☆* o(≧▽≦)o *☆嗨~我是小奥&#x1f379; &#x1f4c4;&#x1f4c4;&#x1f4c4;个人博客&#xff1a;小奥的博客 &#x1f4c4;&#x1f4c4;&#x1f4c4;CSDN&#xff1a;个人CSDN &#x1f4d9;&#x1f4d9;&#x1f4d9;Github&#xff1a;传送门 &#x1f4c5;&a…

USB转SPI USB转IIC 串口转SPI串口转IIC SPI I2C模块

一款支持USB转SPI、USB转I2C、USB转GPIO、USB转PWM、USB转ADC的模块。提供上位机工具&#xff0c;开发协议。 资料下载&#xff0c;链接&#xff1a;https://pan.baidu.com/s/1sw3RCMwjhrMO4qzUBq9bjA 提取码&#xff1a;qzjp 概述 串口转多协议模组为了客户调试一些功能…

PICO Developer Center 创建和调试 ADB 命令

PICO 开发者中心概览 ADB 是一个轻量级的 Android 调试桥(Android Debug Bridge&#xff0c;简称 ADB)&#xff0c;用于与 Android 设备进行通信和调试。ADB提供了许多有用的功能&#xff0c;使开发人员能够轻松地管理和调试设备上的应用程序。 你可以使用 PDC 工具来调试系统…

阿里云服务器4核8G配置收费标准及新老用户优惠价格整理

阿里云服务器4核8g配置云服务器u1价格是955.58元一年&#xff0c;4核8G配置还可以选择ECS计算型c7实例、计算型c8i实例、计算平衡增强型c6e、ECS经济型e实例、AMD计算型c8a等机型等ECS实例规格&#xff0c;规格不同性能不同&#xff0c;价格也不同&#xff0c;阿里云服务器网al…

使用 vsCode创建GO项目

最近回顾了一下go的使用&#xff1a;具体操作看下面的参考连接&#xff0c;下面只描述一些踩过的坑&#xff1a; 1. go安装配置 安装go->配置go环境变量 推荐官网下载&#xff0c;速度很快&#xff1b; 这里需要配置五个参数&#xff1a;GOPATH/GOROOT/Path、GO111MODULE/…

如何快速打造属于自己的接口自动化测试框架

1 接口测试 接口测试是对系统或组件之间的接口进行测试&#xff0c;主要是校验数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及相互逻辑依赖关系。 接口自动化相对于UI自动化来说&#xff0c;属于更底层的测试&#xff0c;这样带来的好处就是测试收益更大&#xff…

WordPress设置回收站自动清理天数的插件Change Empty Trash Time

前面boke112百科跟大家分享的『WordPress回收站自动清空时间&#xff1f;如何关闭回收站或设置自动清理天数&#xff1f;』一文&#xff0c;就介绍了可以添加一行代码实现关闭或设置回收站自动清理时间&#xff0c;也可以通过安装Change Empty Trash Time插件来实现。 今天bok…

【论文阅读】One For All: Toward Training One Graph Model for All Classification Tasks

目录 0、基本信息1、研究动机2、创新点——One For All &#xff1a;unique features3、准备4、具体实现4.1、用TAGs统一来自不同领域的图数据4.2、用NOI&#xff08;NODES-OF-INTEREST&#xff09;统一不同图任务4.2.1、NOI子图4.2.2、NOI提示结点 4.3、用于图的上下文学习&am…

java大数据hadoop2.9.2 Java编写Hadoop分析平均成绩

1、准备文件&#xff0c;例如score.txt&#xff0c;内容如下&#xff1a; zs k1 88 ls k1 98 ww k1 78 zs k2 88 ls k2 98 ww k2 78 zs k3 88 ls k3 98 ww k3 78 2、创建maven项目 <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common --><d…

【XTuner 大模型单卡低成本微调实战】学习笔记

参考学习教程【XTuner 大模型单卡低成本微调实战】 理论 Finetune简介 大语言模型 微调模式 增量预训练 指令跟随微调 LoRA和QLoRA Xtuner介绍 实战 自定义微调 用 Medication QA 数据集进行微调 将数据转为 XTuner 的数据格式 目标格式&#xff1a;(.jsonL) 写提示词请C…

ChatGPT 商业提示词攻略书

原文&#xff1a;ChatGPT Business Prompt Playbook 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 一、书系介绍 人工智能发展迅速。非常迅速。 所以我希望你做两件事&#xff1a; (1) 在 Twitter 上关注我&#xff1a;iamkylebalmer (2) 订阅我的免费电子邮件通…

SpringMVC JSON数据处理见解6

6.JSON数据处理 6.1.添加json依赖 springmvc 默认使用jackson作为json类库,不需要修改applicationContext-servlet.xml任何配置&#xff0c;只需引入以下类库springmvc就可以处理json数据&#xff1a; <!--spring-json依赖--> <dependency><groupId>com.f…