RabbitMQ使用篇

☆* o(≧▽≦)o *☆嗨~我是小奥🍹
📄📄📄个人博客:小奥的博客
📄📄📄CSDN:个人CSDN
📙📙📙Github:传送门
📅📅📅面经分享(牛客主页):传送门
🍹文章作者技术和水平有限,如果文中出现错误,希望大家多多指正!
📜 如果觉得内容还不错,欢迎点赞收藏关注哟! ❤️

文章目录

  • RabbitMQ使用篇
  • 一、消息队列概述
    • 1.1 同步通讯和异步通讯
    • 1.2 MQ对比
  • 二、 RabbitMQ
    • 2.1 消息模型
    • 2.2 入门案例
      • (1) publisher实现
      • (2) consumer实现
  • 三、SpringAMQP
    • 3.1 Basic Queue 基本消息队列
      • (1) 消息发送
      • (2) 消息接收
      • (3) 测试
    • 3.2 WorkQueue工作消息队列
      • (1) 消息发送
      • (2) 消息接收
      • (3) 测试
      • (4) 按需获取消息
    • 3.3 发布/订阅模型
    • 3.4 Fanout广播消息队列
      • (1) Spring原生声明交换机和队列
      • (2) 消息发送
      • (3) 消息接收
    • 3.5 Direct定向消息队列
      • (1) 基于注解声明交换机和队列
      • (2) 消息发送
    • 3.6 Topic通配消息队列
      • (1) 消息发送
      • (2) 消息接收
    • 3.7 消息转换器
      • (1) 配置JSON序列化
  • 四、消息可靠性
    • 4.1 生产者消息确认
      • (1) 修改配置
      • (2) 定义Return回调
      • (3) 定义ConfirmCallback
    • 4.2 消息持久化
      • (1) 交换机持久化
      • (2) 队列持久化
      • (3) 消息持久化
    • 4.3 消费者确认
      • (1) none模式
      • (2) auto模式
    • 4.4 消费者失败重试机制
      • (1) 本地重试
      • (2) 失败策略
  • 五、死信交换机
    • 5.1 死信交换机
      • 利用死信交换机接收死信
    • 5.2 TTL
      • (1) 接收超时死信的死信交换机
      • (2) 声明队列,并设置TTL
      • (3) 发送消息,设定TTL
    • 5.3 延迟队列
      • (1) DelayExchange原理
      • (2) 使用DelayExchange
        • ① 声明DelayExchange
        • ② 发送消息
  • 六、惰性队列
    • 6.1 消息堆积问题
    • 6.2 惰性队列
      • (1) 基于命令行设置lazy-queue
      • (2) 基于Bean声明lazy-queue
      • (3) 基于@RabbitListener声明lazy-queue
  • 七、MQ集群
    • 7.1 集群分类
    • 7.2 普通集群
      • (1) 集群结构和特征
      • (2) 部署
    • 7.3 镜像集群
      • (1) 集群结构和特征
      • (2) 部署
    • 7.4 仲裁队列
      • (1) 集群特征
      • (2) 部署
      • (3) 创建仲裁队列

RabbitMQ使用篇

一、消息队列概述

1.1 同步通讯和异步通讯

微服务间通讯有同步和异步两种方式:

  • 同步通讯
  • 异步通讯

同步通讯

微服务之间的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:

  • 耦合度高:每次加入新的需求,都要修改原来的代码
  • 性能下降:调用者需要等待服务提供者响应,如果调用链过长则响应时间等于每次调用的时间之和
  • 资源浪费:调用链中的每个服务在等待响应过程中,不能释放占用的资源,高并发场景下会极度浪费系统资源
  • 级联失败:如果服务调用者出现问题,所有调用方都会跟着出问题,迅速会导致微服务群故障

异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

  • 在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

  • 订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。

在这里插入图片描述

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

1.2 MQ对比

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般
  • 追求可用性:Kafka、 RocketMQ 、RabbitMQ
  • 追求可靠性:RabbitMQ、RocketMQ
  • 追求吞吐能力:RocketMQ、Kafka
  • 追求消息低延迟:RabbitMQ、Kafka

二、 RabbitMQ

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离

在这里插入图片描述

2.1 消息模型

RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:

在这里插入图片描述

2.2 入门案例

简单队列模式的模型图:

在这里插入图片描述

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息

(1) publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel

代码实现:

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class PublisherTest {@Testpublic void testSendMessage() throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.发送消息String message = "hello, rabbitmq!";channel.basicPublish("", queueName, null, message.getBytes());System.out.println("发送消息成功:【" + message + "】");// 5.关闭通道和连接channel.close();connection.close();}
}

(2) consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息

代码实现:

import com.rabbitmq.client.*;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class ConsumerTest {public static void main(String[] args) throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.订阅消息channel.basicConsume(queueName, true, new DefaultConsumer(channel){@Overridepublic void handleDelivery(String consumerTag, Envelope envelope,AMQP.BasicProperties properties, byte[] body) throws IOException {// 5.处理消息String message = new String(body);System.out.println("接收到消息:【" + message + "】");}});System.out.println("等待接收消息。。。。");}
}

总结

基本消息队列的消息发送流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 利用channel向队列发送消息

基本消息队列的消息接收流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 定义consumer的消费行为handleDelivery()

  5. 利用channel将消费者与队列绑定

三、SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:https://spring.io/projects/spring-amqp

在这里插入图片描述

在这里插入图片描述

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息

在使用SpringAMQP之前,我们首先需要在项目中引入MQ依赖:

<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

下面我们就通过实现这五种不同的模型来进行学习RabbitMQ。

3.1 Basic Queue 基本消息队列

(1) 消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.x.x # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: xxx # 用户名password: xxx # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}

(2) 消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.x.x # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: xxx # 用户名password: xxx # 密码

然后在consumer服务的包中新建一个类SpringRabbitListener,代码如下:

import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}

(3) 测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息。

3.2 WorkQueue工作消息队列

Work queues,也被称为(Task queues)任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

在这里插入图片描述

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

(1) 消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

	/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/@Testpublic void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}}

(2) 消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

    @RabbitListener(queues = "simple.queue")public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);}@RabbitListener(queues = "simple.queue")public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);}

注意到这个消费者sleep了,用来模拟任务耗时。

(3) 测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

(4) 按需获取消息

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

3.3 发布/订阅模型

发布订阅的模型如图:

在这里插入图片描述

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给exchange
  • Exchange:交换机。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout广播,将消息交给所有绑定到交换机的队列。
    • Direct定向,把消息交给符合指定routing key 的队列。
    • Topic通配符,把消息交给符合routing pattern(路由模式) 的队列。
  • Consumer:消费者,与以前一样,订阅队列,没有变化。
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

3.4 Fanout广播消息队列

在广播模式下,消息发送流程是这样的:

  • 可以有多个队列
  • 每个队列都要绑定到Exchange(交换机)
  • 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 交换机把消息发送给绑定过的所有队列
  • 订阅队列的消费者都能拿到消息

在这里插入图片描述

在实际应用中是这样的:

  • 创建一个交换机xxx.fanout,类型是Fanout
  • 创建两个队列fanout.queue1fanout.queue2,绑定到交换机xxx.fanout

(1) Spring原生声明交换机和队列

Spring提供了一个接口Exchange,来表示所有不同类型的交换机:

在这里插入图片描述

consumer中创建一个类,声明队列和交换机:

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("xxx.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}

(2) 消息发送

publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {// 队列名称String exchangeName = "itcast.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}

(3) 消息接收

consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

3.5 Direct定向消息队列

Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange

在这里插入图片描述

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

(1) 基于注解声明交换机和队列

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

consumerSpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "xxx.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "xxx.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}

(2) 消息发送

publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "xxx.direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

3.6 Topic通配消息队列

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

在这里插入图片描述

解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue4:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news

(1) 消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

	/*** topicExchange*/@Testpublic void testSendTopicExchange() {// 交换机名称String exchangeName = "xxx.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);}

(2) 消息接收

在consumer服务的SpringRabbitListener中添加方法:

    @RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "xxx.topic", type = ExchangeTypes.TOPIC),key = "china.#"))public void listenTopicQueue1(String msg){System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "xxx.topic", type = ExchangeTypes.TOPIC),key = "#.news"))public void listenTopicQueue2(String msg){System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");}

3.7 消息转换器

Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

(1) 配置JSON序列化

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

publisherconsumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

这样我们就可以在MQ控制台看到我们的消息的数据了,而不是以字节的方式显示。

四、消息可靠性

消息从发送,到消费者接收,会经理多个过程:

在这里插入图片描述

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失
    • 生产者发送的消息未送达exchange
    • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

4.1 生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。**这种机制必须给每个消息指定一个唯一ID。**消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

在这里插入图片描述

注意,确定机制发送消息时,需要给每个消息设置一个全局唯一id,以区分不同消息,避免ack冲突。

(1) 修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:rabbitmq:publisher-confirm-type: correlated # 异步回调publisher-returns: truetemplate:mandatory: true # 消息路由失败策略,回调ReturnCallback

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple同步等待confirm结果,直到超时
    • correlated异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false,则直接丢弃消息。

(2) 定义Return回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}

(3) 定义ConfirmCallback

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务中,定义一个单元测试方法:

    public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);}

4.2 消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化

(1) 交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

    @Beanpublic DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

在这里插入图片描述

(2) 队列持久化

RabbitMQ中队列默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

在这里插入图片描述

(3) 消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

    @Testpublic void testDurableMessage() {// 1.准备消息Message message = MessageBuilder.withBody("hello, spring".getBytes(StandardCharsets.UTF_8)).setDeliveryMode(MessageDeliveryMode.PERSISTENT) // PERSISTENT 持久化.build();// 2.发送消息rabbitTemplate.convertAndSend("simple.queue", message);}

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

4.3 消费者确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • RabbitMQ投递消息给消费者
  • 消费者获取消息后,返回ACK给RabbitMQ
  • RabbitMQ删除消息
  • 消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

  • manual手动ack,需要在业务代码结束后,调用api发送ack。
  • auto自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack,抛出异常则返回nack。
  • none关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除。

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失。
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack。
  • manual:自己根据业务情况,判断什么时候该ack。

一般,我们都是使用默认的auto即可

(1) none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

(2) auto模式

再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

在这里插入图片描述

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

在这里插入图片描述

4.4 消费者失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力。

(1) 本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

(2) 失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试次数耗尽后,直接reject,丢弃消息。默认就是这种方式。

  • ImmediateRequeueMessageRecoverer:重试次数耗尽后,返回nack,消息重新入队。

  • RepublishMessageRecoverer:重试次数耗尽后,将失败消息投递到指定的交换机。

比较优雅的一种处理方案是RepublishMessageRecoverer失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列。

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机。

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

总结:如何保证RabbitMQ的消息可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启消息持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

五、死信交换机

5.1 死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.rejectbasic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,简称DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

在这里插入图片描述

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

在这里插入图片描述

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

在这里插入图片描述

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

在这里插入图片描述

利用死信交换机接收死信

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

在这里插入图片描述

我们在consumer服务中,定义一组死信交换机、死信队列:

	// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct@Beanpublic Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();}// 声明死信交换机 dl.direct@Beanpublic DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);}// 声明存储死信的队列 dl.queue@Beanpublic Queue dlQueue(){return new Queue("dl.queue", true);}// 将死信队列 与 死信交换机绑定@Beanpublic Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");}

5.2 TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

(1) 接收超时死信的死信交换机

consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

    @RabbitListener(bindings = @QueueBinding(value = @Queue(name = "dl.ttl.queue", durable = "true"),exchange = @Exchange(name = "dl.ttl.direct"),key = "ttl"))public void listenDlQueue(String msg){log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);}

(2) 声明队列,并设置TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

    @Beanpublic Queue ttlQueue(){return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化.ttl(10000) // 设置队列的超时时间,10秒.deadLetterExchange("dl.ttl.direct") // 指定死信交换机.build();}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

    @Beanpublic DirectExchange ttlExchange(){return new DirectExchange("ttl.direct");}@Beanpublic Binding ttlBinding(){return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");}

发送消息,但是不要指定TTL:

    @Testpublic void testTTLQueue() {// 创建消息String message = "hello, ttl queue";// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);// 记录日志log.debug("发送消息成功");}

因为队列的TTL值是10000ms,也就是10秒。可以通过日志查看消息发送与接收之间的时差刚好是10秒。

(3) 发送消息,设定TTL

在发送消息时,也可以指定TTL:

    @Testpublic void testTTLMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);log.debug("发送消息成功");}

另外,需要注意,当队列、消息都设置了TTL时,任意一个到期该消息就会成为死信。

5.3 延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

(1) DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息
  • 判断消息是否具备x-delay属性
  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
  • 返回routing not found结果给消息发送者
  • x-delay时间到期后,重新投递消息到指定队列

(2) 使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

① 声明DelayExchange

基于注解方式(推荐)

    @RabbitListener(bindings = @QueueBinding(value = @Queue(name = "delay.queue", durable = "true"),exchange = @Exchange(name = "delay.direct", delayed = "true"),key = "delay"))public void listenDelayExchange(String msg) {log.info("消费者接收到了delay.queue的延迟消息");}

基于bean方式

    @Beanpublic DirectExchange delayedExchange() {return ExchangeBuilder.directExchange("delay.direct") // 指定交换机类型和名称 .delayed() // 设置delay属性为true.durable(true) // 持久化.build();}@Beanpublic Queue delayedQueue() {return new Queue("delay.queue");}@Beanpublic Binding delayBinding() {return BindingBuilder.bind(delayedQueue()).to(delayedExchange()).with("delay");}
② 发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

    @Testpublic void testDelayedMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, delayed message".getBytes(StandardCharsets.UTF_8)).setHeader("x-delay", 10000).build();// 消息id,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("delay.direct", "delay", message, correlationData);log.debug("发送消息成功");}

六、惰性队列

6.1 消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

在这里插入图片描述

解决消息堆积有两种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

6.2 惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储

(1) 基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

  • rabbitmqctl :RabbitMQ的命令行工具
  • set_policy :添加一个策略
  • Lazy :策略名称,可以自定义
  • "^lazy-queue$" :用正则表达式匹配队列的名字
  • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
  • --apply-to queues :策略的作用对象,是所有的队列

(2) 基于Bean声明lazy-queue

    @Beanpublic Queue lazyQueue() {return QueueBuilder.durable("lazy.queue").lazy() // 开启x-queue-mode为lazy.build();}

(3) 基于@RabbitListener声明lazy-queue

    @RabbitListener(queuesToDeclare = @Queue(name = "lazy.queue",durable = "true",arguments = @Argument(name = "x-queue-mode", value = "lazy")))public void listenLazyQueue(String msg) {log.info("接收到lazy.queue的消息:{}", msg);}

总结:惰性队列的优缺点?

惰性队列的优点有哪些?

  • 基于磁盘存储,消息上限高
  • 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

  • 基于磁盘存储,消息时效性会降低
  • 性能受限于磁盘的IO

七、MQ集群

7.1 集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

  • 普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。
  • 镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

7.2 普通集群

(1) 集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失

结构如图:

在这里插入图片描述

(2) 部署

这里不再给出详细部署步骤,请读者自行查阅。

7.3 镜像集群

(1) 集群结构和特征

镜像集群,本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

在这里插入图片描述

(2) 部署

这里不再给出详细部署步骤,请读者自行查阅。

7.4 仲裁队列

(1) 集群特征

仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

(2) 部署

这里不再给出详细部署步骤,请读者自行查阅。

(3) 创建仲裁队列

@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}

以上就是RabbitMQ的所有基础使用部分,如有错误,欢迎指正~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/630796.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

USB转SPI USB转IIC 串口转SPI串口转IIC SPI I2C模块

一款支持USB转SPI、USB转I2C、USB转GPIO、USB转PWM、USB转ADC的模块。提供上位机工具&#xff0c;开发协议。 资料下载&#xff0c;链接&#xff1a;https://pan.baidu.com/s/1sw3RCMwjhrMO4qzUBq9bjA 提取码&#xff1a;qzjp 概述 串口转多协议模组为了客户调试一些功能…

PICO Developer Center 创建和调试 ADB 命令

PICO 开发者中心概览 ADB 是一个轻量级的 Android 调试桥(Android Debug Bridge&#xff0c;简称 ADB)&#xff0c;用于与 Android 设备进行通信和调试。ADB提供了许多有用的功能&#xff0c;使开发人员能够轻松地管理和调试设备上的应用程序。 你可以使用 PDC 工具来调试系统…

阿里云服务器4核8G配置收费标准及新老用户优惠价格整理

阿里云服务器4核8g配置云服务器u1价格是955.58元一年&#xff0c;4核8G配置还可以选择ECS计算型c7实例、计算型c8i实例、计算平衡增强型c6e、ECS经济型e实例、AMD计算型c8a等机型等ECS实例规格&#xff0c;规格不同性能不同&#xff0c;价格也不同&#xff0c;阿里云服务器网al…

使用 vsCode创建GO项目

最近回顾了一下go的使用&#xff1a;具体操作看下面的参考连接&#xff0c;下面只描述一些踩过的坑&#xff1a; 1. go安装配置 安装go->配置go环境变量 推荐官网下载&#xff0c;速度很快&#xff1b; 这里需要配置五个参数&#xff1a;GOPATH/GOROOT/Path、GO111MODULE/…

如何快速打造属于自己的接口自动化测试框架

1 接口测试 接口测试是对系统或组件之间的接口进行测试&#xff0c;主要是校验数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及相互逻辑依赖关系。 接口自动化相对于UI自动化来说&#xff0c;属于更底层的测试&#xff0c;这样带来的好处就是测试收益更大&#xff…

WordPress设置回收站自动清理天数的插件Change Empty Trash Time

前面boke112百科跟大家分享的『WordPress回收站自动清空时间&#xff1f;如何关闭回收站或设置自动清理天数&#xff1f;』一文&#xff0c;就介绍了可以添加一行代码实现关闭或设置回收站自动清理时间&#xff0c;也可以通过安装Change Empty Trash Time插件来实现。 今天bok…

【论文阅读】One For All: Toward Training One Graph Model for All Classification Tasks

目录 0、基本信息1、研究动机2、创新点——One For All &#xff1a;unique features3、准备4、具体实现4.1、用TAGs统一来自不同领域的图数据4.2、用NOI&#xff08;NODES-OF-INTEREST&#xff09;统一不同图任务4.2.1、NOI子图4.2.2、NOI提示结点 4.3、用于图的上下文学习&am…

java大数据hadoop2.9.2 Java编写Hadoop分析平均成绩

1、准备文件&#xff0c;例如score.txt&#xff0c;内容如下&#xff1a; zs k1 88 ls k1 98 ww k1 78 zs k2 88 ls k2 98 ww k2 78 zs k3 88 ls k3 98 ww k3 78 2、创建maven项目 <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common --><d…

【XTuner 大模型单卡低成本微调实战】学习笔记

参考学习教程【XTuner 大模型单卡低成本微调实战】 理论 Finetune简介 大语言模型 微调模式 增量预训练 指令跟随微调 LoRA和QLoRA Xtuner介绍 实战 自定义微调 用 Medication QA 数据集进行微调 将数据转为 XTuner 的数据格式 目标格式&#xff1a;(.jsonL) 写提示词请C…

ChatGPT 商业提示词攻略书

原文&#xff1a;ChatGPT Business Prompt Playbook 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 一、书系介绍 人工智能发展迅速。非常迅速。 所以我希望你做两件事&#xff1a; (1) 在 Twitter 上关注我&#xff1a;iamkylebalmer (2) 订阅我的免费电子邮件通…

SpringMVC JSON数据处理见解6

6.JSON数据处理 6.1.添加json依赖 springmvc 默认使用jackson作为json类库,不需要修改applicationContext-servlet.xml任何配置&#xff0c;只需引入以下类库springmvc就可以处理json数据&#xff1a; <!--spring-json依赖--> <dependency><groupId>com.f…

MySQL窗口函数(MySQL Window Functions)

1、窗口函数基本概念 官网地址&#xff1a;https://dev.mysql.com/doc/refman/8.0/en/window-functions.html 窗口可以理解为 记录集合&#xff0c;窗口函数就是在满足某种条件的记录集合上执行的特殊函数。 即&#xff1a;每条记录都要在此窗口内执行函数。 静态窗口&#x…

springboot集成shiro+前端vue,前后端分离项目遇到跨域以及sessionid拿不到等问题

近期在写前后端分离的项目&#xff0c;由于前后端分离导致原来使用的shiro配置无法满足现有系统要求。同时在前后端分离项目中存在的一些问题。例如&#xff0c;一些用户信息需要存储在后端方便进行安全性判断&#xff0c;但这些存储在后端的session前端却获取不到&#xff08;…

Docker本地私有仓库搭建配置指导

一、说明 因内网主机需要拉取镜像进行Docker应用&#xff0c;因此需要一台带外主机作为内网私有仓库来提供内外其他docker业务主机使用。参考架构如下&#xff1a; 相关资源&#xff1a;加密、Distribution registry、Create and Configure Docker Registry、Registry部署、D…

K8s-架构

一、K8s节点划分 K8s集群包含Master(控制节点)和Node(工作节点)&#xff0c;应用部署在Node节点上。 集群架构图&#xff1a; 二、Master节点 Master节点分成四个组件&#xff1a;scheduler、ApiServer、Controller Manager、ETCD。类似三层结构&#xff0c;controller&#…

2024年外贸新兴市场有哪些 | 箱讯科技国际贸易平台

当前欧美市场经济增速放缓&#xff0c;通胀持续高位导致物价普遍上涨&#xff0c;进一步引发消费疲软。此外&#xff0c;受原材料价格、劳动力、土地等经营成本上升影响&#xff0c;外贸出口企业利润被进一步压缩。 困顿之中&#xff0c;新兴市场成为破局关键&#xff0c;巨大的…

Mysql流程控制函数

1概述 Mysql中的流程控制函数非常重要&#xff0c;可以根据不同的条件&#xff0c;执行不同的流程转换&#xff0c;可以在SQL语句中实现不同的条件选择。MySQL中的流程处理函数主要包括IF()、IFNULL()和CASE()函数。 1.1 IF函数 SELECT IF(1 > 0, 正确, 错误);1.2 IFNULL…

rabbitmq基础教程(ui,java,springamqp)

概述&#xff1a;安装看我上篇文章Docker安装rabbitmq-CSDN博客 任务一 创建一个队列 这样创建两个队列 在amq.fanout交换机里面发送数据 模拟发送数据 发送消息&#xff0c;发现一下信息&#xff1a; 所以得出理论&#xff0c;消息发送是先到交换机&#xff0c;然后由交换机…

如何手写一个RPC?

在学习 RPC 框架之前&#xff0c;我们先来手写一个RPC。 我们在学习的过程中&#xff0c;一定要做到知其然&#xff0c;还要知其所以然。 架构演进 单体架构 要知道&#xff0c;在以前单体架构的时候&#xff0c;会将所有的应用功能都集中在一个服务当中。 单体架构初始开发…

新版K8s:v1.28拉取Harbor仓库镜像以及本地镜像(docker弃用改用containerd,纯纯踩坑)

目录 一、项目概述二、环境三、项目样式Harborkuboard运行样式 四、核心点Harbor安装config.toml文件修改(containerd)ctr、nerdctl相关命令kuboard工作负载 五、总结 一、项目概述 使用Kuboard作为k8s集群的管理平台&#xff0c;Harbor作为镜像仓库&#xff0c;拉取Harbor镜像…