Spark SQL函数定义

目录

窗口函数

SQL函数分类

Spark原生自定义UDF函数

Pandas的UDF函数

Apache Arrow框架基本介绍

基于Arrow完成Pandas DataFrame和Spark DataFrame互转

基于Pandas完成UDF函数

 自定义UDF函数

自定义UDAF函数


窗口函数

分析函数 over(partition by xxx order by xxx [asc|desc] [rows between xxx and xxx])

分析函数可以大致分成如下3类:
1- 第一类: 聚合函数 sum() count() avg() max() min()
2- 第二类: row_number() rank() dense_rank() ntile()
3- 第三类: first_value() last_value() lead() lag()

在Spark SQL中使用窗口函数案例:

需求是找出每个cookie中pv排在前3位的数据,也就是分组取TOPN问题

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql import Window as win# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'if __name__ == '__main__':# 1- 创建SparkSession对象spark = SparkSession.builder\.config('spark.sql.shuffle.partitions',1)\.appName('sparksql_win_function')\.master('local[*]')\.getOrCreate()# 2- 数据输入init_df = spark.read.csv(path='file:///export/data/gz16_pyspark/02_spark_sql/data/cookie.txt',schema='cookie string,datestr string,pv int',sep=',',encoding='UTF-8')init_df.createTempView('win_data')init_df.show()init_df.printSchema()# 3- 数据处理# SQLspark.sql("""select cookie,datestr,pvfrom (selectcookie,datestr,pv,row_number() over (partition by cookie order by pv desc) as rnfrom win_data) tmp where rn<=3""").show()# DSL"""select:注意点,结果中需要看到哪几个字段,就要明确写出来"""init_df.select("cookie","datestr","pv",F.row_number().over(win.partitionBy('cookie').orderBy(F.desc('pv'))).alias('rn')).where('rn<=3').select("cookie","datestr","pv").show()# 4- 数据输出# 5- 释放资源spark.stop()

SQL函数分类

SQL函数,主要分为以下三大类:

  • UDF函数:用户自定义函数

    • 特点:一对一,输入一个得到一个

    • 例如:split() substr()

  • UDAF函数:用户自定义聚合函数

    • 特点:多对一,输入多个得到一个

    • 例如:sum() avg() count() min()

  • UDTF函数:用户自定义表数据生成函数

    • 特点:一对多,输入一个得到多个

    • 例如:explode()

在SQL中提供的所有的内置函数,都是属于以上三类中某一类函数

思考:有这么多的内置函数,为啥还需要自定义函数呢?

为了扩充函数功能。在实际使用中,并不能保证所有的操作函数都已经提前的内置好了。很多基于业务处理的功能,其实并没有提供对应的函数,提供的函数更多是以公共功能函数。此时需要进行自定义,来扩充新的功能函数

1- SparkSQL原生的时候,Python只能开发UDF函数
2- SparkSQL借助其他第三方组件,Python可以开发UDF、UDAF函数

在Spark SQL中,针对Python语言,对于自定义函数,原生支持的并不是特别好。目前原生仅支持自定义UDF函数,而无法自定义UDAF函数和UDTF函数。

在1.6版本后,Java 和scala语言支持自定义UDAF函数,但Python并不支持。

Spark SQL原生存在的问题:大量的序列化和反序列

 虽然Python支持自定义UDF函数,但是其效率并不是特别的高效。因为在使用的时候,传递一行处理一行,返回一行的方式。这样会带来非常大的序列化的开销的问题,导致原生UDF函数效率不好
    
早期解决方案: 基于Java/Scala来编写自定义UDF函数,然后基于python调用即可
    
目前主要的解决方案: 引入Arrow框架,可以基于内存来完成数据传输工作,可以大大的降低了序列化的开销,提供传输的效率,解决原生的问题。同时还可以基于pandas的自定义函数,利用pandas的函数优势完成各种处理操作

Spark原生自定义UDF函数

 自定义函数流程:

第一步: 在PySpark中创建一个Python的函数,在这个函数中书写自定义的功能逻辑代码即可

第二步: 将Python函数注册到Spark SQL中
    注册方式一: udf对象 = sparkSession.udf.register(参数1,参数2,参数3)
        参数1: 【UDF函数名称】,此名称用于后续在SQL中使用,可以任意取值,但是要符合名称的规范
        参数2: 【自定义的Python函数】,表示将哪个Python的函数注册为Spark SQL的函数
        参数3: 【UDF函数的返回值类型】。用于表示当前这个Python的函数返回的类型
        udf对象: 返回值对象,是一个UDF对象,可以在DSL中使用
    
        说明: 如果通过方式一来注册函数, 【可以用在SQL和DSL】
    
    注册方式二:  udf对象 = F.udf(参数1,参数2)
        参数1: Python函数的名称,表示将那个Python的函数注册为Spark SQL的函数
        参数2: 返回值的类型。用于表示当前这个Python的函数返回的类型
        udf对象: 返回值对象,是一个UDF对象,可以在DSL中使用
        
        说明: 如果通过方式二来注册函数,【仅能用在DSL中】
        
    注册方式三:  语法糖写法  @F.udf(returnType=返回值类型)  放置到对应Python的函数上面
        说明: 实际是方式二的扩展。如果通过方式三来注册函数,【仅能用在DSL中】
    
        
第三步: 在Spark SQL的 DSL/ SQL 中进行使用即可

# 自定义一个函数,完成对数据统一添加一个后缀名的操作
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
# 绑定指定的Python解释器
from pyspark.sql.types import StringTypeos.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'if __name__ == '__main__':print("请自定义一个函数,完成对数据统一添加一个后缀名的操作_itheima")# 1- 创建SparkSession对象spark = SparkSession.builder\.config("spark.sql.shuffle.partitions",1)\.appName('sparksql_udf_basetype')\.master('local[*]')\.getOrCreate()# 2- 数据输入init_df = spark.createDataFrame(data=[(1,'张三','广州'),(2,'李四','深圳')],schema='id int,name string,address string')init_df.printSchema()init_df.show()init_df.createTempView('tmp')# 3- 数据处理# 3.1- 创建自定义的Python函数def add_suffix(address):return address + "_itheima"# 3.2- 将Python函数注册到Spark SQL# 注册方式一dsl_add_suffix = spark.udf.register('sql_add_suffix',add_suffix,StringType())# 3.3- 在SQL/DSL中调用# SQLspark.sql("""selectid,name,address,sql_add_suffix(address) as new_addressfrom tmp""").show()# DSLinit_df.select("id","name","address",dsl_add_suffix("address").alias("new_address")).show()print("-"*30)# 在错误的地方调用了错误的函数。spark.udf.register参数1取的函数名只能在SQL中使用,不能在DSL中用。# spark.sql("""#     select#         id,name,address,#         dsl_add_suffix(address) as new_address#     from tmp# """).show()# 注册方式二:UDF返回值类型传值方式一dsl2_add_suffix = F.udf(add_suffix,StringType())# DSLinit_df.select("id","name","address",dsl2_add_suffix("address").alias("new_address")).show()# 注册方式二:UDF返回值类型传值方式二dsl3_add_suffix = F.udf(add_suffix, 'string')# DSLinit_df.select("id","name","address",dsl3_add_suffix("address").alias("new_address")).show()# 注册方式三:语法糖/装饰器@F.udf(returnType=StringType())def add_suffix_candy(address):return address + "_itheima"# DSLinit_df.select("id","name","address",add_suffix_candy("address").alias("new_address")).show()# 4- 数据输出# 5- 释放资源spark.stop()

Pandas的UDF函数

Apache Arrow框架基本介绍

Apache Arrow是Apache旗下的一款顶级的项目。是一个跨平台的在内存中以列式存储的数据层,它的设计目标就是作为一个跨平台的数据层,来加快大数据分析项目的运行效率

Pandas 与 Spark SQL 进行交互的时候,建立在Apache Arrow上,带来低开销 高性能的UDF函数

Arrow并不会自动使用,在某些情况下,需要配置 以及在代码中需要进行小的更改才可以使用

如何安装? 三个节点建议都安装

检查服务器上是否有安装pyspark
pip list | grep pyspark  或者 conda list | grep pyspark

如果服务器已经安装了pyspark的库,那么仅需要执行以下内容,即可安装。例如在 node1安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspark[sql]
    
如果服务器中python环境中没有安装pyspark,建议执行以下操作,即可安装。例如在 node2 和 node3安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyarrow==10.0.0



如何使用呢? 默认不会自动启动的, 一般建议手动配置

sparkSession.conf.set('spark.sql.execution.arrow.pyspark.enabled',True)

基于Arrow完成Pandas DataFrame和Spark DataFrame互转

使用场景:

1- Spark的DataFrame -> Pandas的DataFrame:当大数据处理到后期的时候,可能数据量会越来越少,这样可以考虑使用单机版的Pandas来做后续数据的分析

2- Pandas的DataFrame -> Spark的DataFrame:当数据量达到单机无法高效处理的时候,或者需要和其他大数据框架集成的时候,可以转成Spark中的DataFrame

总结:
Pandas的DataFrame -> Spark的DataFrame: spark.createDataFrame(data=pandas_df)
Spark的DataFrame -> Pandas的DataFrame: init_df.toPandas()

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'if __name__ == '__main__':print("基于Arrow完成Pandas DataFrame和Spark DataFrame互转")# 1- 创建SparkSession对象spark = SparkSession.builder\.appName('dataframe')\.master('local[*]')\.getOrCreate()# 手动开启Arrow框架spark.conf.set('spark.sql.execution.arrow.pyspark.enabled', True)# 2- 数据输入init_df = spark.createDataFrame(data=[(1, '张三', '广州'), (2, '李四', '深圳')],schema='id int,name string,address string')# 3- 数据处理# sparksql dataframe -> pandas dataframepd_df = init_df.toPandas()print(type(pd_df),pd_df)new_pd_df = pd_df[pd_df['id']==2]# pandas dataframe -> sparksql dataframespark_df = spark.createDataFrame(data=new_pd_df)spark_df.show()spark_df.printSchema()# 4- 数据输出# 5- 释放资源spark.stop()

基于Pandas完成UDF函数

基于Pandas的UDF函数来转换为Spark SQL的UDF函数进行使用。底层是基于Arrow框架来完成数据传输,允许向量化(可以充分利用计算机CPU性能)操作。

Pandas的UDF函数其实本质上就是Python的函数,只不过函数的传入数据类型为Pandas的类型

基于Pandas的UDF可以使用自定义UDF函数和自定义UDAF函数

自定义函数流程:

第一步: 在PySpark中创建一个Python的函数,在这个函数中书写自定义的功能逻辑代码即可

第二步: 将Python函数包装成Spark SQL的函数
    注册方式一: udf对象 = spark.udf.register(参数1, 参数2)
        参数1: UDF函数名称。此名称用于后续在SQL中使用,可以任意取值,但是要符合名称的规范
        参数2: Python函数的名称。表示将哪个Python的函数注册为Spark SQL的函数
        使用: udf对象只能在DSL中使用。参数1指定的名称只能在SQL中使用
        注意: 如果编写的是UDAF函数,那么注册方式一需要配合注册方式三,一起使用
        
    注册方式二: udf对象 = F.pandas_udf(参数1, 参数2)
        参数1: 自定义的Python函数。表示将哪个Python的函数注册为Spark SQL的函数
        参数2: UDF函数的返回值类型。用于表示当前这个Python的函数返回的类型对应到Spark SQL的数据类型
        udf对象: 返回值对象,是一个UDF对象。仅能用在DSL中使用
    
    注册方式三: 语法糖写法  @F.pandas_udf(returnType=返回值Spark SQL的数据类型)  放置到对应Python的函数上面
        说明: 实际是方式一的扩展。仅能用在DSL中使用
    
    
第三步: 在Spark SQL的 DSL/ SQL 中进行使用即可

 自定义UDF函数

自定义Python函数的要求:SeriesToSeries

  • 表示:第一步中创建自定义Python函数的时候,输入参数的类型和返回值类型必须都是Pandas中的Series类型

  • 需求:完成a列和b列的求和计算操作

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession
import pandas as pd
import pyspark.sql.functions as F# 绑定指定的Python解释器
from pyspark.sql.types import IntegerTypeos.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'if __name__ == '__main__':# 1- 创建SparkSession对象spark = SparkSession.builder\.appName('pandas_udf')\.master('local[*]')\.getOrCreate()# 手动开启Arrow框架spark.conf.set('spark.sql.execution.arrow.pyspark.enabled', True)# 2- 数据输入init_df = spark.createDataFrame(data=[(1,2),(2,3),(3,4)],schema='num1 int,num2 int')init_df.createTempView('tmp')# 3- 数据处理# 3.1- 自定义Python函数"""1- num1:pd.Series用来限定输入的参数类型是Pandas中的Series对象2-  -> pd.Series用来限定返回值类型是Pandas中的Series对象"""def my_sum(num1:pd.Series, num2:pd.Series) -> pd.Series:return num1+num2# 3.2- 注册进SparkSQL。注册方式一dsl_my_sum = spark.udf.register('sql_my_sum',my_sum)# 3.3- 使用# SQLspark.sql("""selectnum1,num2,sql_my_sum(num1,num2) as resultfrom tmp""").show()# DSLinit_df.select("num1","num2",dsl_my_sum("num1", "num2").alias("result")).show()# 注册方式二dsl2_my_sum = F.pandas_udf(my_sum,IntegerType())# DSLinit_df.select("num1","num2",dsl2_my_sum("num1", "num2").alias("result")).show()# 注册方式三@F.pandas_udf(IntegerType())def my_sum_candy(num1:pd.Series, num2:pd.Series) -> pd.Series:return num1+num2# DSLinit_df.select("num1","num2",my_sum_candy("num1", "num2").alias("result")).show()# 4- 数据输出# 5- 释放资源spark.stop()

自定义UDAF函数

自定义Python函数的要求:Series To 标量

  • 表示:自定义函数的输入数据类型是Pandas中的Series对象,返回值数据类型是标量数据类型。也就是Python中的数据类型,例如:int、float、bool、list....

  • 需求:对某一列数据计算平均值的操作

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession
import pandas as pd
import pyspark.sql.functions as F# 绑定指定的Python解释器
from pyspark.sql.types import IntegerType, FloatTypeos.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'if __name__ == '__main__':# 1- 创建SparkSession对象spark = SparkSession.builder\.appName('pandas_udaf')\.master('local[*]')\.getOrCreate()# 手动开启Arrow框架spark.conf.set('spark.sql.execution.arrow.pyspark.enabled', True)# 2- 数据输入init_df = spark.createDataFrame(data=[(1,2),(2,3),(3,3)],schema='num1 int,num2 int')init_df.createTempView('tmp')# 3- 数据处理# 3.1- 自定义Python函数"""UDAF对自定义Python函数的要求:输入数据的类型必须是Pandas中的Series对象,返回值类型必须是Python中的标量数据类型"""@F.pandas_udf(returnType=FloatType())def my_avg(num2_col:pd.Series) -> float:print(type(num2_col))print(num2_col)# 计算平均值return num2_col.mean()# 3.2- 注册进SparkSQL。注册方式一dsl_my_avg = spark.udf.register('sql_my_avg',my_avg)# 3.3- 使用# SQLspark.sql("""selectsql_my_avg(num2) as resultfrom tmp""").show()# DSLinit_df.select(dsl_my_avg("num2").alias("result")).show()# 4- 数据输出# 5- 释放资源spark.stop()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/630722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式开发--STM32G4系列片上FLASH的读写

这个玩意吧&#xff0c;说起来很简单&#xff0c;就是几行代码的事&#xff0c;但楞是折腾了我大半天时间才搞定。原因后面说&#xff0c;先看代码吧&#xff1a; 读操作 读操作很简单&#xff0c;以32位方式读取的时候是这样的&#xff1a; data *(__IO uint32_t *)(0x080…

Python GUI库大汇总

所有程序都是基于命令行的&#xff0c;这些程序可能只有一些“专业”的计算机人士才会使用。例如前面编写的五子棋等程序&#xff0c;恐怕只有程序员自己才愿意玩这么“糟糕”的游戏&#xff0c;很少有最终用户愿意对着黑乎乎的命令行界面敲命令。 相反&#xff0c;如果为程序…

如何禁用WordPress站点的管理员电子邮件验证或修改检查频率?

今天boke112百科登录某个WordPress站点时&#xff0c;又出现“管理员邮件确认”的提示&#xff0c;要求确认此站点的管理员电子邮箱地址是否仍然正确。具体如下图所示&#xff1a; 如果点击“稍后提醒我”&#xff0c;那么管理员邮件验证页面就会在3天后重新显示。 说实话&…

[C++] opencv - Mat::convertTo函数介绍和使用场景

Mat::convertTo()函数 Converts an array to another data type with optional scaling. 该函数主要用于数据类型的相互转换。 The method converts source pixel values to the target data type. saturate_cast<> is applied at the end to avoid possible overf…

Pytest应用PO设计模式

Pytest应用PO设计模式 本篇内容主要涉及在软件测试中实现PO设计模式的应用 包含PO思想、PO原则、PO使用方法&#xff0c;最后会写一个实际模板供大家参考。 一、PO思想 ​ PO(PageObject)&#xff0c;在UI页面测试时&#xff0c;通常会存在大量的页面元素和各种点击操作&#…

坚持刷题 | 二叉树的层序遍历

坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天刷&#xff1a;二叉树的层序遍历 题目 102二叉树的层序遍历 考察点 数据结构基础&#xff1a; 能够正确地使用二叉树数据结构&#xff0c;并了解二叉树的基本性质。编程基础&#xff1a; 能够熟练使用Java编程语言&a…

网络编程【1】

【 1 】什么是网络编程 网络编程是指通过计算机网络进行数据交换和通信的编程过程。它涉及到使用网络协议和通信接口&#xff0c;使不同计算机之间能够进行数据传输和通信。 总结&#xff1a; 网络编程的研究前提就是基于互联网 网络编程就是基于互联网写代码 【 2 】为什么…

Qt编程之仿gnome-terminal终端样式 +颜色文字显示

Qt仿linux 终端样式 颜色文字 1.说再多废话不如直接show code2.实现效果 本文采用QTextBrowser作为文本显示窗口&#xff0c;进行文本的显示。本文实例实现的效果并没有终端的输入效果&#xff0c;这里只是提供一些仿终端样式思路。 1.说再多废话不如直接show code 1.ui文件…

0间隔24h采集线报+源码的资源网

一款网站程序零间隔24h采集线报源码的资源网&#xff0c;更新下载类目的采集 及 导入&#xff0c;这款网站程序&#xff1a;jizhiCMS 高仿新版某刀资源网模板进行自动采集。 安装方法&#xff1a; 将根目录文件上传服务器 将根目录文件的sql.sql导入mysql数据库 环境需要支…

【刷题】 leetcode 2 .两数相加

两数相加 两数相加1 思路一 &#xff08;暴毙版&#xff09;2 思路二 &#xff08;本质出发&#xff09; 谢谢阅读Thanks♪(&#xff65;ω&#xff65;)&#xff89;下一篇文章见&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 两数相加 我们来看…

【Spring Boot 3】【Redis】分布式锁

【Spring Boot 3】【Redis】分布式锁 背景介绍开发环境开发步骤及源码工程目录结构总结 背景 软件开发是一门实践性科学&#xff0c;对大多数人来说&#xff0c;学习一种新技术不是一开始就去深究其原理&#xff0c;而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经…

逆向使用webpack打包的网站

webpack webpack 是 JavaScript 应用程序的模块打包器,可以把开发中的所有资源&#xff08;图片、js文件、css文件等&#xff09;都看成模块&#xff0c;通过loader&#xff08;加载器&#xff09;和 plugins &#xff08;插件&#xff09;对资源进行处理&#xff0c;打包成符…

Git怎么将文件夹上传至github,全过程

小白建议参考github文件上传全流程-新手入门系列&#xff08;超详细&#xff01;&#xff01;&#xff01;&#xff09; 中间可能会有报错 $ ssh -T gitgithub.com ssh: connect to host github.com port 22: Connection timed out 这时&#xff0c;参考&#xff0c;如何解决&a…

React 基于Ant Degisn 实现table表格列表拖拽排序

效果图&#xff1a; 代码&#xff1a; myRow.js import { MenuOutlined } from ant-design/icons; import { DndContext } from dnd-kit/core; import { restrictToVerticalAxis } from dnd-kit/modifiers; import {arrayMove,SortableContext,useSortable,verticalListSorti…

2023年的年度总结PPT不一样了?

添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 到了年终&#xff0c;需要撰写年度总结和制定计划了吗&#xff1f; 找不到合适的 PPT 模板&#xff1f; 感到缺乏灵感&#xff1f; 为做 PPT 绞尽脑汁&#xff1f; 为何不试试 AI 写 PPT 呢&#xff1f…

Spring MVC学习之——自定义日期转化器

日期转换器 在数据库中的日期数据是date类型&#xff0c;而如何我们想在页面自己添加数据&#xff0c;一般是使用年-月-日的形式&#xff0c;这种形式不仅date类型接收不到&#xff0c;而且传来的是String类型&#xff0c;此时&#xff0c;我们就可以自定义日期转换器来接收数…

【MySQL】权限控制

DCL-权限控制 查询权限 show grants for 用户名主机名;授予权限 grant 权限列表 on 数据库名.表名 to 用户名主机名;grant all on test.* to user%; %是通配符&#xff0c;表示任意主机。撤销权限 revoke 权限列表 on 数据库名.表名 from 用户名主机名;revoke all on test.*…

顶顶通呼叫中心中间件自动外呼来电转人工显示被叫号码而不是显示路由条件 :一步步配置(mod_cti基于FreeSWITCH)

介绍 顶顶通呼叫中心中间件自动外呼来电转人工显示被叫号码而不是显示自动外呼的路由条件&#xff0c;可以是默认的被叫号码也可以改为显示指定的号码 一、显示默认被叫 1、配置拨号方案 打开ccadmin-》点击拨号方案-》找到进入排队-》配置跟图中一样的通道变量。修改了拨号…

关于KT6368A双模蓝牙芯片的BLE在ios的lightblue大数量数据测试

测试简介 关于KT6368A双模蓝牙芯片的BLE在ios的lightblue app大数量数据测试 测试环境&#xff1a;iphone7 。KT6368A双模程序96B6 App&#xff1a;lightblue ios端 可以打开log日志查看通讯流程 测试数据&#xff1a;长度是1224个字节&#xff0c;单次直接发给KT6368A&a…