【论文阅读笔记】4篇Disentangled representation learning用于图像分割的论文

4篇应用解耦表示学习的文章,这里只关注如何解耦,更多细节不关注,简单记录一下。

1.Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion

Chen C, Dou Q, Jin Y, et al. Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22. Springer International Publishing, 2019: 447-456.

【核心思想】

通过特征解耦门控融合技术,提高了在部分成像模态缺失时的分割准确性。方法是将输入的多种成像模态解耦为模态特定的外观代码模态不变的内容代码,然后将它们融合为一个共享表示。这种方法增强了面对缺失数据时分割过程的鲁棒性,并在多种缺失模态的场景中显示出显著的改进。论文还使用了BRATS挑战数据集来验证方法的有效性,并展示了与当前最先进方法相比的竞争性能。

这篇文章中的解耦在于对不同模态使用各自独立的encoder编码为内容编码和样式编码

【网络结构】

image-20240116154208633

模型关键在于它采用了创新的特征解耦和门控融合技术,这里只关注特征解耦,另外的部分在我另外一篇博客中有记录。

  • 特征解耦部分:负责将不同成像模态(如MRI)的数据分解为模态特定的外观特征和跨模态的内容特征。

    对于外观代码,并将其设置为8位向量,假设其先验分布是中心各向同性高斯 N ( 0 , I ) N(0, I) N(0,I),使用KL散布逼近。

    对于模态不变性的内容编码,将它们融合成表达肿瘤基本语义内容的集成表示。为保证解耦是有效性,所获得的内容表示 z z z 应该能够在给定某种模态的任何外观代码的情况下重建原始图像。为了鼓励这种重建能力,论文通过引入一组特定于模态的解码器来设计伪循环一致性损失(使用 L1-Norm 来减轻生成的图像变得模糊的情况。

    为了模拟缺失模态,使用了modality 级别的dropout,也就是图中的 δ i \delta_{i} δi,这种思路在后续很多的论文中被采用,如mmFormer(MICCAI,2022),MMMViT(Biomedical Signal Processing and Control,2024)…

2.Disentangle domain features for cross-modality cardiac image segmentation

Pei C, Wu F, Huang L, et al. Disentangle domain features for cross-modality cardiac image segmentation[J]. Medical Image Analysis, 2021, 71: 102078.

本文的核心思想是提出一种新的跨模态医学图像分割方法,它通过特征分离技术解决了源域和目标域数据之间的差异。这种方法将图像特征分为领域不变特征(DIFs)和领域特定特征(DSFs),通过创新的零损失函数和自注意力模块来增强特征的表现力。文章通过在心脏图像分割任务上的实验验证了其有效性,展示了在处理不同成像模式的医学图像时的优越性能。

image-20240116174503834

源域的有标签数据集表示为 $ X_s = {(x_{si}, y_{si}) | i = 1, \ldots, n} $,目标域的无标签数据集表示为 $ X_t = {x_{tj} | j = 1, \ldots, m}$。作者提出了一种特征分离的方法,以学习两个域的领域不变特征(DIFs)和领域特定特征(DSFs)该框架首先使用四个编码器将每个域的特征分离为DIFs和DSFs(其中style也是从标准正态分布中采样的8bits向量)。然后,它们交换DIFs并将其解码为具有保持解剖结构和交换风格(域/成像方式)的特定于域的图像。作者对生成的图像进行重复的编码和解码操作,形成了CycleGAN的改进版本。为了增强特征分离操作,作者进一步采用了零损失,迫使从源域图像中提取的目标域特定特征的值为零,反之亦然(背后的假设是,如果编码器只能从源域中提取 DSF,那么它将从目标域的图像中提取零信息)。成功分离特征后,可以使用DIFs和相应的标签来训练分割模型。为了实现更准确的分割,作者引入了一个额外的判别器,以限制生成分割的解剖形状。为了模拟图像区域间的长距离、多层次依赖关系,作者引入了自注意力模块。

3.Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation

Yang J, Dvornek N C, Zhang F, et al. Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22. Springer International Publishing, 2019: 255-263.

本论文的核心思想是提出了一种无监督领域适应方法,通过使用解离表示来处理跨模态医学图像(如CT和MRI)之间的转换。这个方法通过将图像分解到一个共享的、与域无关的内容空间一个特定于域的风格空间,实现了在不同医学成像模态之间有效适应。这样的设计旨在维护不同领域间复杂的语义信息,同时在具体的医学图像分割任务,如肝脏分割上,展现出卓越的性能和泛化能力。

image-20240117103458061

  • 解耦表示学习模块:该模块由两个主要组件组成,一个用于重建的变分自动编码器(VAE)和一个用于对抗训练的生成对抗网络(GAN)。训练 VAE 组件进行域内重建,其中重建损失最小化,以鼓励编码器和生成器彼此相反。用于跨域翻译的 GAN 组件经过训练,可以鼓励潜在空间的解开,将其分解为内容和风格子空间。模块由几个联合训练的编码器 E c 1 E_{c1} Ec1 E c 2 E_{c2} Ec2 E s 1 E_{s1} Es1 E s 1 E_{s1} Es1,生成器 G 1 G_1 G1 G 2 G_2 G2和判别器 D 1 D_1 D1 D 2 D_2 D2组成。生成器试图通过使用交换样式代码成功的跨域生成来欺骗鉴别器。由于解开的样式代码 si ∈Si,底层映射被假定为多对多。收敛时有 p ( c 1 ) = p ( c 2 ) p\left(c_{1}\right)=p\left(c_{2}\right) p(c1)=p(c2),这是保存解剖信息的共享内容空间。
  • 纯内容图像的域适应:一旦学习到解离的表示后,可以仅使用内容代码ci而不使用风格代码si来重建仅包含内容的图像。对于CT和MR,它们的内容代码都嵌入在一个共享的潜在空间中,该空间包含解剖结构信息并排除模态外观信息。论文在来自CT领域的仅包含内容的图像上训练一个分割模型,并直接将其应用于来自MR领域的仅包含内容的图像。

4.Disentangled representation learning in cardiac image analysis

Chartsias A, Joyce T, Papanastasiou G, et al. Disentangled representation learning in cardiac image analysis[J]. Medical image analysis, 2019, 58: 101535.

核心思想是开发一种新的医学影像处理方法,特别是针对心脏影像。该方法通过空间解剖网络(SDNet)将医学影像分解为两个组成部分:一个空间解剖因子和一个非空间方式因子。这种方法使得医学影像的分析更为有效,适用于半监督分割、多任务分割和回归、以及影像到影像的合成。这种解耦表示不仅提高了分割任务的性能,而且为医学影像分析提供了更具解释性和多样性的方法。

image-20240117100202820

首先使用解剖编码器 f a n a t o m y f_{anatomy} fanatomy 将输入图像编码为多通道空间表示,即解剖因子 s s s 。然后 s s s 可以用作分割网络 h h h 的输入,以生成多类分割掩码(或某些其他特定于任务的网络)。模态编码器 f f f 模态使用因子 s s s 和输入图像来生成表示成像模态的潜在向量 z z z。将两个表示 s s s z z z 组合起来,通过解码器网络 g g g 重建输入图像。

  • 解剖编码器:U-Net。空间表示是一个由相同空间尺寸的多个二进制通道组成的特征图。一些通道包含单独的解剖(心脏)子结构,而其他对重建必要的结构则自由分布在剩余通道中,而其余通道包含了周围的图像结构(尽管更混合,解剖上不那么明显)。空间表示是通过使用softmax激活函数得到的,以强制每个像素在通道间的激活值之和为一。
  • 模态表示:输入解剖因子和原始图像,学习后验分布。论文采用VAE 学习低维潜在空间,使得学习到的潜在表示与设置为各向同性多元高斯 p ( z ) = N ( 0 , 1 ) p(z)=\mathcal{N}(0,1) p(z)=N(0,1) 的先验分布匹配。

基于以上四篇论文可以对Disentangled representation learning简要总结如下:

Disentangled representation learning 是一种机器学习方法,旨在从复杂数据集中学习出表示,这些表示能够揭示数据中的基础结构和变化因素。该领域的关键思想是将真实世界数据中的变化因素(如物体的位置、大小、颜色、纹理、解剖结构等)分离出来,并以一种方式表示,使得这些因素相互独立。以下是该领域的一些常见做法和应用:

常见做法

  1. 变分自编码器(VAEs): 通过潜在空间的学习来表示数据。在这个潜在空间中,不同的维度尝试捕捉数据的不同特征。
  2. 生成对抗网络(GANs): 在GANs中,可以进行修改以鼓励潜在空间的不同维度表示不同的数据特征。
  3. 信息瓶颈(Information Bottleneck): 这种方法通过限制模型可以访问的信息量,迫使模型学习更有效的数据表示。
  4. 约束优化: 在模型训练过程中引入特定的约束,例如正则化项,以鼓励表示的分离。
  5. 监督或半监督学习: 使用带标签的数据来引导学习过程,确保潜在空间中的不同维度对应于特定的、有意义的变化。

应用

  1. 图像处理: 在图像编辑、风格转换、面部表情生成等领域,分离表示学习使得可以独立地操纵图像的不同特征。
  2. 数据压缩: 通过学习数据的有效表示,可以实现更高效的数据压缩。
  3. 强化学习: 在强化学习中,分离表示可以帮助更好地理解环境状态和决策因素。
  4. 异常检测: 分离的表示可以用于识别数据中的异常或偏差,因为它们可能不遵循正常数据的分布。
  5. 生物医学数据分析: 在这个领域,分离表示可以用于识别不同的生物标志物或疾病特征。

这些方法和应用展示了分离表示学习在理解和操作复杂数据方面的潜力。通过这种方法,可以更容易地识别和利用数据中的关键特征,从而在各种任务中实现更好的性能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/629401.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PDF 文档解除密码

PDF 文档解除密码 1. 文件 -> 文档属性 -> 安全 -> 文档限制摘要2. PDF365References 1. 文件 -> 文档属性 -> 安全 -> 文档限制摘要 密码保护《算法设计与分析基础_第3版.pdf》 2. PDF365 https://www.pdf365.cn/ 免费功能 -> PDF 去密码 开始去除 Re…

wireshark使用教程

目录 windows平台安装Wireshark组件选择Additional TasksPacket CaptureUSB CaptureNpcap Installation Options Ubuntu上安装 Wireshark不使用 sudo 运行 Wireshark 使用GUI抓包使用命令行抓包确定抓取哪个网卡的报文抓取数据包停止抓包设置过滤条件 参考资料 Wireshark 是一款…

保姆级ESP-IDF开发环境搭建

1. 手动安装工具链,命令行方式(windows) 1.1 下载离线安装器 进入乐鑫 ESP-IDF Windows Installer Download 下载页面,选择离线版本工具(网络原因,安装过程中使用github下载会出问题)。 1.2 使…

QGIS全国卫星影像加载插件

我们曾分享过通过在QGIS中加载全国卫星影像的方法。 现在,我们再来分享一个可以加载全国卫星影像的QGIS插件。 如何加载QGIS插件 在QGIS中,选择插件菜单中的管理和安装插件菜单,如下图所示。 插件管理 在显示的界面中,输入“j…

两步解决宝塔面板无法访问(无法访问或拒绝链接)

宝塔面板,突然无法进入,显示“IP拒绝链接”。 使用SSH工具登录服务器 /etc/init.d/bt defaultbt default 命令 宝塔获取登录的默认地址、用户名和登录密码; 重启面板服务 sudo /etc/init.d/bt初始化宝塔选项 漏刻有时

Clickhouse: One table to rule them all!

前面几篇笔记我们讨论了存储海量行情数据的个人技术方案。它们之所以被称之为个人方案,并不是因为性能弱,而是指在这些方案中,数据都存储在本地,也只适合单机查询。 数据源很贵 – 在这个冬天,我们已经听说&#xff0…

Python进程池multiprocessing.Pool

环境: 鲲鹏920:192核心 内存:756G python:3.9 python单进程的耗时 在做单纯的cpu计算的场景,使用单进程核多进程的耗时做如下测试: 单进程情况下cpu的占用了如下,占用一半的核心数: 每一步…

数据结构实战:变位词侦测

文章目录 一、实战概述二、实战步骤(一)逐个比较法1、编写源程序2、代码解释说明(1)函数逻辑解释(2)主程序部分 3、运行程序,查看结果4、计算时间复杂度 (二)排序比较法1…

ADA-YOLO:YOLOv8+注意力+Adaptive Head,mAP提升3%

生物医学图像分析中的目标检测和定位至关重要,尤其是在血液学领域,检测和识别血细胞对于诊断和治疗决策至关重要。虽然基于注意力的方法在各个领域中目标检测方面取得了显著的进展,但由于医学影像数据集的独特挑战,其在医学目标检…

JUC的常见类

目录 Callable ReentrantLock Semaphore CountDownLatch JUC即 java.util.concurrent,其中存放了一些进行多线程编程时有用的类 Callable Callable是一个接口,在我们实现Runnable创建线程时,Runnable关注的是其过程,而不关注…

MySQL实现跨库join查询

MySQL实现跨库join查询 一.同服务器的不同库 只需要在表名前加上db_name select* fromuserdb.user u join orderdb.order o onu.id o.user_id;二.不同服务器的不同库 查看配置 FEDERATED SHOW engines;如果是NO,需要改为YES.默认是NO 在my.ini文件中增加一行,…

Kotlin 进阶

1.lambda 表达式 package com.jmj.myapp.lamdbaimport javax.security.auth.callback.Callbackfun main() {1.test1 {println(this1) }}fun <T> T.test1(callback:T.() -> Unit) {this.callback() }package com.jmj.myapp.lamdbaimport javax.security.auth.callback…

HCIA——11计算机网络分层结构——OSI/ISO、TCP/IP

学习目标&#xff1a; 参考模型 计算机网络 1.掌握计算机网络的基本概念、基本原理和基本方法。 2.掌握计算机网络的体系结构和典型网络协议&#xff0c;了解典型网络设备的组成和特点&#xff0c;理解典型网络设备的工作原理。 3.能够运用计算机网络的基本概念、基本原理和基本…

​​社交媒体与新闻:Facebook在信息传播中的作用

社交媒体已经成为我们获取和传播新闻的主要渠道之一&#xff0c;而Facebook作为社交媒体的巨头&#xff0c;在信息传播中扮演着举足轻重的角色。本文将深入探讨社交媒体对新闻传播的影响&#xff0c;聚焦于Facebook在这一领域的独特作用&#xff0c;以及这种作用对我们的新闻体…

2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文

这回带大家体验一下2024“华数杯”国际大学生数学建模竞赛呀&#xff01; 完整内容获取在文末 此题涉及到放射性废水从日本排放到海洋中的扩散问题&#xff0c;以及对环境和人类健康的潜在影响。 ## 问题重述 1. **预测污染范围和程度&#xff1a;** - 使用数学模型描述放射性…

springboot-简单测试 前端上传Excel表格后端解析数据

导入依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.2.2</version></dependency><dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxm…

【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

Ubantu 安装vscode配置c/c++环境

文章目录 安装VSCode注意 snap包冲突 安装C/C编译环境注意 进程锁占用 配置C开发环境安装插件配置tasks.json配置c_cpp_properties.json 配置调试环境配置 launch.json 安装VSCode 方式一&#xff1a;ubantu 软件里面直接安装 方式二&#xff1a;官网下载deb安装包https://cod…

新增PostgreSQL数据库管理功能,1Panel开源面板v1.9.3发布

2024年1月15日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.9.3版本。 在这一版本中&#xff0c;1Panel新增了PostgreSQL数据库管理功能&#xff0c;并且支持设置PHP运行环境扩展模版。此外&#xff0c;我们进行了30多项功能更新和问题修复。1Panel应用…

Android性能优化 | DEX 布局优化和启动配置文件

Android性能优化 | DEX 布局优化和启动配置文件 引言 使用DEX布局优化和启动配置文件是优化Android应用性能的有效途径。DEX布局优化可以通过优化应用程序中的DEX文件布局&#xff0c;从而加快Android应用的启动速度和执行速度。启动配置文件则提供了一种灵活的方式来控制应用…