【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

## 搜索C2f源码位置并新建C2f类

在项目目录中全局搜索class c2f即可找到c2f的源码位置。然后打开源码位置,进行相应修改。源码路径为:ultralytics/nn/modules/block.py

在原文件中直接copy一份c2f类的源码,然后命名为c2f_Attention,如下所示:

在这里插入图片描述

在不同文件导入新建的C2f类

ultralytics/nn/modules/block.py顶部,all中添加刚才创建的类的名称:c2f_Attention,如下图所示:

在这里插入图片描述

同样需要在ultralytics/nn/modules/__init__.py文件,相应位置导入刚出创建的c2f_Attention类。如下图:

在这里插入图片描述

还需要在ultralytics/nn/tasks.py中导入创建的c2f_Attention类,,如下图:

在这里插入图片描述

parse_model解析函数中添加C2f类

ultralytics/nn/tasks.pyparse_model解析网络结构的函数中,加入c2f_Attention类,如下图:
在这里插入图片描述

创建新的配置文件c2f_att_yolov8.yaml

ultralytics/cfg/models/v8目录下新建c2f_att_yolov8.yaml配置文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_Attention, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_Attention, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_Attention, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

新的c2f_att_yolov8.yaml配置文件与原yolov8.yaml文件的对比如下:

在这里插入图片描述

在C2f中添加注意力:ShuffleAttention

注意:对于有通道数参数的注意力机制,其输入通道数为其上层的输出通道数。这个注意力添加的位置有关。

在路径ultralytics/nn下新建注意力模块,ShuffleAttention.py文件。内容如下:

import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameterclass ShuffleAttention(nn.Module):def __init__(self, channel=512, reduction=16, G=8):super().__init__()self.G = Gself.channel = channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid = nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()# group into subfeaturesx = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w# channel_splitx_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w# channel attentionx_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1x_channel = x_0 * self.sigmoid(x_channel)# spatial attentionx_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,wx_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,wx_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w# concatenate along channel axisout = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,wout = out.contiguous().view(b, -1, h, w)# channel shuffleout = self.channel_shuffle(out, 2)return out

ultralytics/nn/tasks.py中导入,并修改在parse_model解析网络结构的函数中,添加解析代码:

在这里插入图片描述

在这里插入图片描述

注意力不同位置添加方法

ultralytics/nn/modules/block.py中的c2f_Attention类中代码相应位置添加注意力机制:

1 . 方式一:在self.cv1后面添加注意力机制

在这里插入图片描述

2.方式二:在self.cv2后面添加注意力机制

在这里插入图片描述

3.方式三:在c2fbottleneck中添加注意力机制,将Bottleneck类,复制一份,并命名为Bottleneck_Attention,然后,在Bottleneck_Attention的cv2后面添加注意力机制,同时修改C2f_Attention类别中的BottleneckBottleneck_Attention。如下图所示:

在这里插入图片描述

加载配置文件并训练

加载c2f_att_yolov8.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/c2f_att_yolov8.yaml')model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='datasets/TomatoData/data.yaml', epochs=150, batch=2)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/629382.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubantu 安装vscode配置c/c++环境

文章目录 安装VSCode注意 snap包冲突 安装C/C编译环境注意 进程锁占用 配置C开发环境安装插件配置tasks.json配置c_cpp_properties.json 配置调试环境配置 launch.json 安装VSCode 方式一:ubantu 软件里面直接安装 方式二:官网下载deb安装包https://cod…

新增PostgreSQL数据库管理功能,1Panel开源面板v1.9.3发布

2024年1月15日,现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.9.3版本。 在这一版本中,1Panel新增了PostgreSQL数据库管理功能,并且支持设置PHP运行环境扩展模版。此外,我们进行了30多项功能更新和问题修复。1Panel应用…

Android性能优化 | DEX 布局优化和启动配置文件

Android性能优化 | DEX 布局优化和启动配置文件 引言 使用DEX布局优化和启动配置文件是优化Android应用性能的有效途径。DEX布局优化可以通过优化应用程序中的DEX文件布局,从而加快Android应用的启动速度和执行速度。启动配置文件则提供了一种灵活的方式来控制应用…

股票涨跌原理

相信很多人都知道,在每一个价位上成交的多头订单和空头订单的数量都是相等的,那为什么会上涨和下跌,背后的原理是什么? 举个生活中的例子: 其实在交易市场上的成交与我们日常生活中的买卖商品成交是类似的&#xff0…

【杂谈】如何测试EEPROM可以保存数据100年以及擦写次数,磨损均衡问题,阿伦尼乌斯方程的老化测试法

【引出问题】 引用帖子:How Do You Test If An EEPROM Can Hold Data For 100 Years? | Hackaday 在hackaday上看到一篇有意思的帖子,如何测试 EEPROM 是否可以保存数据 100 年以及EERPOM的耐久性问题 比如Microchip的文档里面介绍,EEPRO…

C++I/O流——(4)格式化输入/输出(第一节)

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言​📝 含泪播种的人一定能含笑收获&#xff…

独立服务器和云服务器的区别

独立服务器和云服务器的区别是很多用户在选择服务器时要做的课程,那么独立服务器和云服务器的区别有哪些呢? 独立服务器和云服务器是两种不同的服务器部署方式,它们在性能、成本、资源利用、安全性和维护等方面存在显著差异。 1. **性能对比**&#xff…

【DC-6靶场渗透】

文章目录 前言 一、确定靶场地址 二、信息收集 三、账号枚举并破解 四、寻找漏洞 五、反弹shell 六、提权 前言 今天做一下DC6靶场 一、确定靶场地址 1、查看靶机mac地址 2、kali使用nmap,arp-scan工具扫描 nmap -sn 172.16.100.0/24 arp-scan 172.16.100.0/24 I…

Kali Linux保姆级教程|零基础从入门到精通,看完这一篇就够了!(附工具包)

作为一名从事网络安全的技术人员,不懂Kali Linux的话,连脚本小子都算不上。 Kali Linux预装了数百种享誉盛名的渗透工具,使你可以更轻松地测试、破解以及进行与数字取证相关的任何其他工作。 今天给大家分享一套Kali Linux资料合集&#xf…

【大模型评测】常见的大模型评测数据集

开源大模型评测排行榜 https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard 其数据是由其后端lm-evaluation-harness平台提供。 数据集 1.英文测试 MMLU https://paperswithcode.com/dataset/mmlu MMLU(大规模多任务语言理解&#xff09…

公网对讲|酒店无线对讲系统

提高工作效率 酒店对讲机可以帮助酒店员工实现快速、有效的内部沟通,从而提高服务质量。例如,前台接待人员可以通过对讲机及时通知客房服务人员为客人提供快速入住服务,或者通知餐饮部门为客人提供送餐服务。此外,对讲机还可以帮…

我劝你千万不要去做CSGO游戏搬砖

大家好,我是阿阳。今天我要给大家讲解一下做CSGO游戏搬砖项目前必须知道的五个问题。作为一个做这个项目已经三年多的老手,我带过的搬砖学员已经有好几百人了。在这个过程中,也积累了不少经验和教训,希望能够通过这篇文章给大家一…

Vue创建项目配置情况

刚开始接触vue项目创建和运行因为node版本和插件版本不一致时长遇到刚装好插件,项目就跑不起来的情况,特此记录一下 vue -V vue/cli 5.0.8 node -v v12.22.12 npm -v 6.14.16 关闭驼峰命名检查、未使用语法检查 package.json文件内容: {&…

数学建模常见算法的通俗理解(更新中)

目录 1.层次分析法(结合某些属性及个人倾向,做出某种决定) 1.1 粗浅理解 1.2 算法过程 1.2.1 构造判断矩阵 1.2.2 计算权重向量 1.2.3 计算最大特征根 1.2.4 计算C.I.值 1.2.5 求解C.R.值 1.2.6 判断一致性 1.2.7 计算总得分 2 神经网…

Verdaccio中,创建私服时,如何用VERDACCIO_PUBLIC_URL修改页面上资源文件的域名

更多内容,欢迎访问:Verdaccio npm私服时,遇到更多问题 用 Verdaccio 搭建私服时,当使用定义的域名访问时,报错,原因是JS等资源文件的访问域名是 127.0.0.1:4873,并不是我们想要的域名: 通过查看…

2024年第二届“华数杯”国际大学生数学建模竞赛 (B题 ICM)| 光伏发电分析 |数学建模完整代码+建模过程全解全析

光伏发电是一种重要的可再生能源。将太阳能转化为电力可以减少对传统能源的依赖,具有显著的环保和可持续发展优势。全球范围内,光伏发电正在迅速发展。目前,许多国家将光伏发电作为推动清洁能源转型的重要手段。这些国家在政策支持、技术创新和市场发展方面增加了对光伏发电的投…

视频改字视频制作系统,祝福视频,告白视频改字系统搭建开发定制

一、视频改字制作系统功能介绍: 素材同步,极速下载,会员充值,达人分销,积分系统,精美UI, 卡密兑换, 直播挂载, 五端兼容:微信小程序,抖音小程序&…

Kafka-RecordAccumulator分析

前面介绍过,KafkaProducer可以有同步和异步两种方式发送消息,其实两者的底层实现相同,都是通过异步方式实现的。 主线程调用KafkaProducer.send方法发送消息的时候,先将消息放到RecordAccumulator中暂存,然后主线程就…

JVM实战(23)——内存碎片优化

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…

I2C总线和通信协议详解 (超详细配42张高清图+万字长文)

I2C总线和通信协议详解 (超详细配42张高清图万字长文) I2C(Inter-Integrated Circuit)通信总线,作为嵌入式系统设计中的一个关键组成部分,其灵活性和高效率使其在高级应用中备受青睐。本文旨在提供关于I2C通信总线的深度解析&…