《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
26.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
《------正文------》
## 搜索C2f源码位置并新建C2f类在项目目录中全局搜索class c2f
即可找到c2f
的源码位置。然后打开源码位置,进行相应修改。源码路径为:ultralytics/nn/modules/block.py
在原文件中直接copy一份c2f
类的源码,然后命名为c2f_Attention
,如下所示:
在不同文件导入新建的C2f类
在ultralytics/nn/modules/block.py
顶部,all
中添加刚才创建的类的名称:c2f_Attention
,如下图所示:
同样需要在ultralytics/nn/modules/__init__.py
文件,相应位置导入刚出创建的c2f_Attention
类。如下图:
还需要在ultralytics/nn/tasks.py
中导入创建的c2f_Attention
类,,如下图:
在parse_model
解析函数中添加C2f类
在ultralytics/nn/tasks.py
的parse_model
解析网络结构的函数中,加入c2f_Attention
类,如下图:
创建新的配置文件c2f_att_yolov8.yaml
在ultralytics/cfg/models/v8
目录下新建c2f_att_yolov8.yaml
配置文件,内容如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f_Attention, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f_Attention, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f_Attention, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
新的c2f_att_yolov8.yaml
配置文件与原yolov8.yaml
文件的对比如下:
在C2f中添加注意力:ShuffleAttention
注意:对于有通道数参数的注意力机制,其输入通道数为其上层的输出通道数。这个注意力添加的位置有关。
在路径ultralytics/nn
下新建注意力模块,ShuffleAttention.py
文件。内容如下:
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameterclass ShuffleAttention(nn.Module):def __init__(self, channel=512, reduction=16, G=8):super().__init__()self.G = Gself.channel = channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid = nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()# group into subfeaturesx = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w# channel_splitx_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w# channel attentionx_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1x_channel = x_0 * self.sigmoid(x_channel)# spatial attentionx_spatial = self.gn(x_1) # bs*G,c//(2*G),h,wx_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,wx_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w# concatenate along channel axisout = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,wout = out.contiguous().view(b, -1, h, w)# channel shuffleout = self.channel_shuffle(out, 2)return out
在ultralytics/nn/tasks.py
中导入,并修改在parse_model
解析网络结构的函数中,添加解析代码:
注意力不同位置添加方法
在ultralytics/nn/modules/block.py
中的c2f_Attention
类中代码相应位置添加注意力机制:
1 . 方式一:在self.cv1
后面添加注意力机制
2.方式二:在self.cv2
后面添加注意力机制
3.方式三:在c2f
的bottleneck
中添加注意力机制,将Bottleneck
类,复制一份,并命名为Bottleneck_Attention
,然后,在Bottleneck_Attention
的cv2后面添加注意力机制,同时修改C2f_Attention
类别中的Bottleneck
为Bottleneck_Attention
。如下图所示:
加载配置文件并训练
加载c2f_att_yolov8.yaml
配置文件,并运行train.py
训练代码:
#coding:utf-8
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/c2f_att_yolov8.yaml')model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='datasets/TomatoData/data.yaml', epochs=150, batch=2)
注意观察,打印出的网络结构是否正常修改,如下图所示:
【源码免费获取】
为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:
关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取
结束语
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
觉得不错的小伙伴,感谢点赞、关注加收藏哦!