【RT-DETR有效改进】ShapeIoU、InnerShapeIoU关注边界框本身的IoU(包含二次创新)

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别。

欢迎大家订阅本专栏,一起学习RT-DETR!  


一、本文介绍

本文给大家带来的改进机制是ShapeIoU其是一种关注边界框本身形状和尺度的边界框回归方法(IoU),同时本文的内容包括过去到现在的百分之九十以上的损失函数的实现,使用方法非常简单,在本文的末尾还会教大家在改进模型时何时添加损失函数才能达到最好的效果,以下为修改了我的调参结果训练的结果图像。

 官方链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

一、本文介绍

二、ShapeIoU

三、ShapeIoU的核心代码 

四、ShapeIoU的使用方式

4.1 修改一

4.2 修改二

五、总结


二、ShapeIoU

官方论文地址: 官方论文地址

官方代码地址: 官方代码地址


这幅图展示了在目标检测任务中,两种不同情况或方法下的边界框回归的对比。

GT (Ground Truth): 用桃色框表示,指的是图像中物体实际的位置和形状。在目标检测中,算法试图尽可能准确地预测这个框。

Anchor: 蓝色框代表一个预定义的框,是算法预设的一系列框,用于与GT框进行匹配,寻找最佳的候选框。

在图中,我们看到四个不同的情况(A、B、C、D),每个都显示了一个anchor与GT的对比,并给出了IoU(交并比)的数值。IoU是一个常用的度量,用来评估预测边界框与真实边界框之间的重叠程度。

论文中给了一堆公式,我也看不太懂,大家有兴趣可以看看。


三、ShapeIoU的核心代码 

其中缺少一个模块ops,大家根据自己结构代码中进行导入即可。

import numpy as np
import torch
import mathclass WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, SIoU=False, WIoU=False, ShapeIoU=False,hw=1, mpdiou=False, Inner=False, alpha=1, ratio=0.7, eps=1e-7, scale=0.0):"""Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).Args:box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in(x1, y1, x2, y2) format. Defaults to True.GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.EIoU (bool, optional): If True, calculate Efficient IoU. Defaults to False.SIoU (bool, optional): If True, calculate Scylla IoU. Defaults to False.eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.Returns:(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags."""if Inner:if not xywh:box1, box2 = ops.xyxy2xywh(box1), ops.xyxy2xywh(box2)(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)b1_x1, b1_x2, b1_y1, b1_y2 = x1 - (w1 * ratio) / 2, x1 + (w1 * ratio) / 2, y1 - (h1 * ratio) / 2, y1 + (h1 * ratio) / 2b2_x1, b2_x2, b2_y1, b2_y2 = x2 - (w2 * ratio) / 2, x2 + (w2 * ratio) / 2, y2 - (h2 * ratio) / 2, y2 + (h2 * ratio) / 2# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)# Union Areaunion = w1 * h1 * ratio * ratio + w2 * h2 * ratio * ratio - inter + epsiou = inter / union# Get the coordinates of bounding boxeselse:if xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + eps# IoUiou = inter / unionif CIoU or DIoU or GIoU or EIoU or SIoU or ShapeIoU or mpdiou or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or mpdiou or WIoU or ShapeIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = cw ** 2 + epsch2 = ch ** 2 + epsreturn iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIoUelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - 0.5 * (distance_cost + shape_cost) + eps # SIoUelif ShapeIoU:#Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distanceww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightc2 = cw ** 2 + ch ** 2 + eps                            # convex diagonal squaredcenter_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4center_distance = hh * center_distance_x + ww * center_distance_ydistance = center_distance / c2#Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shapeomiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - distance - 0.5 * shape_costelif mpdiou:d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2return iou - d1 / hw.unsqueeze(1) - d2 / hw.unsqueeze(1)  # MPDIoUelif WIoU:self = WIoU_Scale(1 - iou)dist = getattr(WIoU_Scale, '_scaled_loss')(self)return iou * dist  # WIoU https://arxiv.org/abs/2301.10051return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdfreturn iou  # IoU


四、ShapeIoU的使用方式

4.1 修改一

第一步我们需要找到如下的文件ultralytics/utils/metrics.py,找到如下的代码,下面的图片是原先的代码部分截图的正常样子,然后我们将上面的整个代码块将下面的整个方法(这里这是部分截图)内容全部替换。

e7a59a4795ac45e29c2ee02d373394e9.png


4.2 修改二

第二步我们找到另一个文件如下->"ultralytics/models/utils/loss.py",(注意这个文件和YOLOv8的修改内容不是一个!!!!)我们找到如下的代码块,初始样子如下,然后用我下面给的代码块替换红框内的代码。

        loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes,xywh=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, SIoU=False,WIoU=False, ShapeIoU=True, hw=2, mpdiou=False, Inner=False,ratio=0.75, eps=1e-7, scale=0.0)

替换完成的样子如下所示。

到此我们就可以进行设置使用了,看到我这里以及将ShapeIoU都设置成True了,同时我们使用Inner思想将其设置为True即可,此时使用的就是InnerShapeIoU。

如果inner为False,ShapeIoU为True那么使用的就是ShapeIoU。 

五、总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的RT-DETR改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 RT-DETR改进专栏:RT-DETR专栏——持续复现各种顶会内容——论文收割机

3d51a0611af1442f833362eaf18fbae2.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/626510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

十、Three场景实现多个物体的合并

Three场景实现多个物体的合并 目的 产品需求是让物体的光柱墙包含一个多边形的区域,二而我的多边形只能使用原型,方向,多边形。那么再研究的时候就需要将这些多边形合并成为一个形状,那么就行实现了。 原先的图形 如上图,是两个mesh组成的。首先寻找mesh合并的方法。 第…

分布式限流要注意的问题

本文已收录至我的个人网站:程序员波特,主要记录Java相关技术系列教程,共享电子书、Java学习路线、视频教程、简历模板和面试题等学习资源,让想要学习的你,不再迷茫。 为什么需要匀速限流 同学们回想一下在Guava小节里…

MySQL运维篇(二)主从复制

一、概述 主从复制是指将主数据库的 DDL 和 DML 操作通过 二进制日志 传到从库服务器中,然后在从库上对这些日志重新执行(也叫重做),从而使得从库和主库的数据保持同步。 MySQL 支持一台主库同时向多台从库进行复制, 从…

聊一聊 C# 的线程本地存储TLS到底是什么

一:背景 1. 讲故事 有朋友在后台留言让我说一下C#的 ThreadStatic 线程本地存储是怎么玩的?这么说吧,C#的ThreadStatic是假的,因为C#完全是由CLR(C)承载的,言外之意C#的线程本地存储&#xff…

基于Java+SSM+MYSQL的助农特色农产品销售系统详细设计和实现【附源码】

基于JavaSSM助农特色农产品销售系统详细设计和实现【附源码】 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定…

调试openjdk11源码报段错误异常Segmentation fault解决方案

解决方案-忽略信号:(gdb) handle SIGSEGV pass noprint nostop ##openjdk11源码编译简单教程 传送门centos7下openjdk11源码下载编译安装_openjdk11下载-CSDN博客 ##调试openjdk11源码报段错误异常Segmentation fault解决方案 Program received signal SIGSEGV,…

连接器应用案例详解 | prodesign加速卡采用Samtec NovaRay® 极高密度阵列

【摘要/前言】 ChatGPT最近受到的欢迎和关注凸显了人工智能在影响日常生活方面所取得的进展。 有谁曾使用 ChatGPT 完成家庭作业或撰写博客?提前申明:这一篇文章绝对是真人撰写~ 无论如何,像ChatGPT这样的聊天机器人和类似服务的支柱都是高…

芯片有关新闻-China chip imports suffer steepest drop on record after US curbs

Jan 16, 2024 9:01 am 由于长期的经济不确定性和美国的出口管制,中国的芯片进口去年遭遇了有记录以来的最大降幅。 全球最大半导体市场的集成电路进口额下降了15.4%,至3494亿美元,这是自2004年中国海关数据公布以来的最大跌幅,并…

Controller层自定义注解拦截request请求校验

一、背景 笔者工作中遇到一个需求,需要开发一个注解,放在controller层的类或者方法上,用以校验请求参数中(不管是url还是body体内,都要检查,有token参数,且符合校验规则就放行)是否传了一个token的参数&am…

BigDecimal中使用ROUND_HALF_UP进行四舍五入

一、BigDecimal 简介 BigDecimal 类位于 java.math 包中,它提供了更加精确的算术运算,使用户完全控制舍入行为。 如果未指定舍入模式,并且无法表示确切的结果,则抛出异常; 否则,可以通过操作提供适当的 MathContext 对…

学生党有必要买台灯吗?央视公认最好的护眼灯

我认为学生党还是很有必要买台灯的!现在的孩子学业压力都比较大,白天光线亮度比较充足,对眼睛没有太大影响。不过夜晚的时候周围环境的光线都逐渐暗下来,如果单靠室内的灯光来学习,那肯定是远远不够的!不仅…

Pandas加载大数据集

Scaling to large datasets — pandas 2.1.4 documentationhttps://pandas.pydata.org/docs/user_guide/scale.html#use-efficient-datatypes官方文档提供了4种方法:只加载需要的列、转化数据类型、使用chunking(转化文件存储格式)、使用Dask…

山海鲸:助力企业实现内外数据整合与价值挖掘

作为山海鲸的开发者,我们深知数字化转型对于企业发展的重要性。在不断钻研如何提升山海鲸可视化这款免费产品的实用性同时,也在不断推出各行实用解决方案,本文将介绍山海鲸企业数字化转型发展解决方案,探讨如何通过数据驱动创新&a…

类和对象特性

#include<iostream> #include<string> using namespace std; class peron{ public:peron(string person){cout << "peron调用构造函数" << endl;tperson person;}~peron(){cout << "peron调用析构函数" << endl;}//手…

compose部署

目录 本章目标&#xff1a; 自定义网络数据库 正文&#xff1a; 注&#xff1a;创建两个网络mynet和mynetwork 1. 自定义网络-mynet 创建自定义网络&#xff1a; docker network create --subnet172.33.0.0/16 mynet 查看网络信息 docker network list 查看指定网络的详细信…

电脑提示“ureg.dll文件丢失”解决方法,ureg.dll文件下载修复安装教程

ureg.dll是Windows操作系统中的一个动态链接库文件&#xff0c;主要与Microsoft Office软件相关&#xff0c;它基本上是为了支持和启动与Office相关的程序和功能。 如果ureg.dll文件丢失或损坏&#xff0c;可能会导致与Microsoft Office相关的程序或功能无法正常工作。对于用户…

CSS中的width与height

CSS中的width与height 1 display: inline-block2 width: auto2.1 外部尺寸与流体特性2.1.1 正常流宽度2.1.2 格式化宽度 2.2 内部尺寸与流体特性2.2.1 包裹性2.2.2 首选最小宽度2.2.3 最大宽度 3 height: 100%3.1 如何让元素支持height: 100%效果 1 display: inline-block 我们…

基于振弦采集仪的地下工程振动监测技术研究

基于振弦采集仪的地下工程振动监测技术研究 地下工程振动监测技术是为了监测地下工程施工过程中产生的振动而进行的研究。振弦采集仪是一种常用的地下工程振动监测设备&#xff0c;它通过固定在地下工程附近的振弦仪来实时采集工程施工过程中产生的振动信号。 基于振弦采集仪的…

@Transactional注解导致@DS切换数据源失效

原因 spring 的Transactional声明式事务管理时通过动态代理实现的。 删除事物的注解 增加其他数据库的事务注解 Transactional(rollbackFor Exception.class, propagation Propagation.REQUIRES_NEW)

如何使用iPad通过Code App+cpolar实现公网地址远程访问vscode

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” 文章目录 1. 在iPad下载Code APP2.安装cpolar内网穿透2.1 cpolar 安装2.2 创建TCP隧道 3. iPad远程vscode4. …