国科大-自然语言处理复习

自然语言处理复习

  • 实体关系联合抽取
    • 流水线式
    • 端到端方法
  • 检索式问答系统
    • 流水线方式
      • 信息检索(IR)阶段
      • 阅读理解(RC)阶段
      • 基于证据强度的重排
      • 基于证据覆盖的重排
      • 结合不同类型的聚合
    • 端到端方式
      • Retriever-Reader的联合学习
      • 基于预训练的Retriever-Free方法
  • 情感分析
    • 联合三元组抽取

谨以此博客作为复习期间的记录

实体关系联合抽取

流水线式

  • 流水线式抽取(Pipline): 把关系抽取的任务分为两个步骤,首先进行实体识别,再抽取出两个实体的关系。
    在这里插入图片描述

  • 联合抽取(Joint Extraction): 端到端,同时进行实体和关系的抽取。流水线式抽取会导致误差在各流程中传递和累加,而联合抽取的方式则实现难度更大

端到端方法

在这里插入图片描述
流水线式抽取和新标注策略的实体关系联合抽取都可以和序列标注结合起来,
在这里插入图片描述

在这里插入图片描述

检索式问答系统

流水线方式

Document Retriever 和 Document Reader 分两步

  • Document Retriever:通过TF-IDF检索维基百科中与问题相关的Top K个文档
  • Document Reader:将答案抽取转化为抽取式阅读理解问题
  • • 输入:一个文档段落,一个自然语言描述的问题
  • • 输出:段落中抽取的答案片段
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

论文中提出的模型结构主要包括两个阶段:信息检索(IR)和阅读理解(RC),以及两种答案重排方法:基于证据强度的重排和基于证据覆盖的重排。以下是这些模型组件的详细介绍:

信息检索(IR)阶段

  • 目标:检索与给定问题最相关的网页段落。
  • 方法:使用搜索引擎(例如谷歌或必应)来找到与问题最相关的顶级网页段落。
  • 特点:与标准阅读理解任务不同,在开放领域设置中,RC模型通常在远程监督下进行训练。这意味着在训练阶段,RC模型会将包含正确答案的所有段落与问题进行匹配

阅读理解(RC)阶段

  • 目标:从检索到的段落中提取答案。
  • 方法:使用阅读理解模型(例如R3模型)来从这些段落中提取候选答案。
  • 特点:与单个固定段落的标准阅读理解任务不同,开放领域问答需要处理多个段落,并从中提取候选答案

基于证据强度的重排

  • 目的:利用段落中出现答案的频率或概率来评估答案的强度。
  • 实现:计算每个答案在顶级答案候选中出现的次数,或者将RC模型为每个答案跨度分配的概率相加,以确定最终预测

基于证据覆盖的重排

  • 目的:根据不同段落的证据如何覆盖问题来排列答案候选。
  • 实现:首先将包含答案的段落连接成一个“伪段落”,然后使用匹配LSTM模型来衡量这个伪段落如何涵盖问题的各个方面

结合不同类型的聚合

  • 方法:将两种重排方法的输出进行加权组合,无需额外训练。
  • 特点:首先使用softmax重新归一化两种基于强度的重排器和一个基于覆盖的重排器提供的前5个答案得分,然后对相同答案的得分进行加权求和,选择得分最高的答案作为最终预测

这种结合信息检索、阅读理解和多种重排策略的方法充分利用了多个段落的证据,有效地提高了开放领域问答系统的性能。

端到端方式

Retriever-Reader的联合学习

Lee et al., Latent Retrieval for Weakly Supervised Open Domain Question Answering, ACL,2019
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于预训练的Retriever-Free方法

Petroni et al. Language Models as Knowledge Bases? ACL, 2019

情感分析

联合三元组抽取

将问题转为一个序列生成问题
统一输入输出的标准
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

A Unified Generative Framework for Aspect-Based Sentiment Analysis

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623632.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Scala采集出行平台机票价格信息

年关将至,趁着过年,打算拖家带口的出去游玩一番,目前也没有什么计划,去哪里玩也比较随机。正好年底公司项目都已经完成差不多,利用空余时间,用爬虫爬取各大景点飞机票价格信息,选择景点不错机票…

【XR806开发板试用】单总线协议驱动DHT11温湿度传感器

1.昨天刚收到极速社区寄来的全志XR806开发板,之前用过很多全志的SOC芯片,但是像这种无线芯片还是第一次用。这次打算使用XR806芯片驱动一下DHT11温湿度传感器。 2.代码如下: #include "common/framework/platform_init.h" #inclu…

鸿蒙Harmony--AppStorage--应用全局的UI状态存储详解

无所求必满载而归,当你降低期待,降低欲望,往往会得到比较好的结果,把行动交给现在,用心甘情愿的态度,过随遇而安的生活,无论结果如何,都是一场惊喜的获得! 目录 一,定义 …

文献阅读:Large Language Models as Optimizers

文献阅读:Large Language Models as Optimizers 1. 文章简介2. 方法介绍 1. OPRO框架说明2. Demo验证 1. 线性回归问题2. 旅行推销员问题(TSP问题) 3. Prompt Optimizer 3. 实验考察 & 结论 1. 实验设置2. 基础实验结果 1. GSM8K2. BBH3.…

多测师肖sir___ui自动化测试po框架讲解版

po框架 一、ui自动化po框架介绍 (1)PO是Page Object的缩写(pom模型) (2)业务流程与页面元素操作分离的模式,可以简单理解为每个页面下面都有一个配置class, 配置class就用来维护页面…

如何用GPT/GPT4进行AI绘图?

详情点击链接:如何用GPT/GPT4进行AI绘图? 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析,AI画图,图像识别,文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Claude2二定制自…

HCIA的网络地址转换NAT

NAT:网络地址转换 功能: 1.将大量的私有地址转换成公有地址(节约IP地址) 2.将一个IP地址转换成另一个IP地址(公有的)(增加内部网络设备的安全性):比如有一个内网&#xf…

Python学习从0到1 day4 python格式化输出和输入方法

其实我不是我,我是青山辽阔 ——24.1.14 一、百分号形式的格式化输出 1.普通输出 #1.定义一些变量 name 陈浩南 age 25 address 广州市天河区#2.变量的输出(普通输出) print(name) print(age) print(address)#3.Python中,还允…

论文阅读:Attention is all you need

【最近课堂上Transformer之前的DL基础知识储备差不多了,但学校里一般讲到Transformer课程也接近了尾声;之前参与的一些科研打杂训练了我阅读论文的能力和阅读源码的能力,也让我有能力有兴趣对最最源头的论文一探究竟;我最近也想按…

Vue2-Vuex中State、Mutation及mapState辅助函数、mapMutations的基本用法

Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。 个人笔记,仅供参考。 state:全局共享的响应式数据 mutation:声明修改全局响应式数据…

分数1/1-1/2+1/3-1/4+1/5 …… + 1/99 - 1/100 求和

要求&#xff1a;计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值&#xff0c;打印出结果。 法一&#xff1a; 从要求&#xff0c;我们可以看出&#xff0c;计算内容分为正数和负数。对他们求和&#xff0c;可以通过分别求和再相加。 #include<stdio.h> int main() {fl…

9.云原生存储之ceph在k8s中应用及问题处理

云原生专栏大纲 文章目录 ceph应用场景ceph应用在k8s集群外使用块设备ceph客户端配置创建块挂载使用删除pool 在k8s集群内使用块设备创建块池和StorageClass使用存储 块存储映射问题处理问题现象事件分析csi-rbdplugin pod日志分析问题小结CentOS 7 编译安装 nbd 模块nbd内核模…

Chapter 9 运算符重载

目的&#xff1a;运用运算符重载 &#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&#x1f353;&…

MySQL8密码重置——Windows环境

1. 环境变量配置 加入操作会方便点&#xff0c;不用每次都要进入其安装目录 Path环境变量加入&#xff1a;%MYSQL_HOME%\bin 2. 停掉服务及服务安装 3. 创建my.ini MySQL安装目录&#xff08;C:\Program Files\MySQL\MySQL Server 8.0&#xff09;下创建my.ini文件 my.ini文…

有哪些品牌的超声波清洗机是值得入手的?超声波清洗机推荐

作为一个既对生活品质有追求&#xff0c;又只想躺平的懒人&#xff0c;一直在努力尝试让轻松的生活少一点绊脚石&#xff0c;而其中最重要的一个&#xff0c;就是清洗眼镜清洗日常生活的一些小物件&#xff0c;讲真&#xff0c;洗这些东西有时候就跟下班回家的KPI一样。白天不累…

《吐血整理》保姆级系列教程-玩转Fiddler抓包教程(6)-Fiddler状态面板详解

1.简介 按照从上往下&#xff0c;从左往右的计划&#xff0c;今天就轮到介绍和分享Fiddler的状态面板了。 2.状态面板概览 Fiddler的状态面板概览&#xff0c;如下图所示&#xff1a; 3.状态面板详解 Fiddler底端状态栏面板详解&#xff0c;如下图所示&#xff1a; 3.1Captu…

重新分区扩展C盘

电脑 – 管理 使用第三方工具&#xff1a;DiskGenius数据恢复及分区管理软件 要选择完成后重启 &#xff0c;如果这里忘记勾选&#xff0c;后面也会再次提醒并默认勾选重启 "调整后容量"是指图片上显示的非C盘之外的盘符的容量&#xff0c;这里指E盘大小 上面已经利…

vue知识-05

聊天室案例(django接口) # chat.hetm<<script src"/static/axios.js"></script><script src"/static/vue.js"></script><body> <div id"app"><h1>聊天室</h1><button click"handleS…

从事铁路工作保护足部,穿什么劳保鞋更安全

铁路运输在我国交通运输业中起着骨干作用&#xff0c;为国民经济的可持续发展和人口流动做出了巨大贡献。安全是铁路运输不可忽视的问题&#xff0c;在作业场地随处能见到“安全就是生命&#xff0c;责任重于泰山”的安全标语&#xff0c;由此可见安全问题是放在首位的。 铁路施…

PyTorch深度学习实战(30)——Deepfakes

PyTorch深度学习实战&#xff08;30&#xff09;——Deepfakes 0. 前言1. Deepfakes 原理2. 数据集分析3. 使用 PyTorch 实现 Deepfakes3.1 random_warp.py3.2 Deepfakes.py 小结系列链接 0. 前言 Deepfakes 是一种利用深度学习技术生成伪造视频和图像的技术。它通过将一个人的…