计算机竞赛 基于机器视觉的停车位识别检测

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式

整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述


import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_poly

points = []
prev_points = []
patches = []
total_points = []
breaker = Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas = ax.figure.canvasself.poly = PolygonSelector(ax, self.onselect)self.ind = []def onselect(self, verts):global pointspoints = vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key == 'b':globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print("data saved in "+ savePath + " file") with open(savePath, 'wb') as f:pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key == 'n': pts = np.array(points, dtype=np.int32) if points != prev_points and len(set(points)) == 4:print("Points : "+str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points = pointsif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('video_path', help="Path of video file")parser.add_argument('--out_file', help="Name of the output file", default="regions.p")args = parser.parse_args()global globSelectglobal savePathsavePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"print("\n> Select a region in the figure by enclosing them within a quadrilateral.")print("> Press the 'f' key to go full screen.")print("> Press the 'esc' key to discard current quadrilateral.")print("> Try holding the 'shift' key to move all of the vertices.")print("> Try holding the 'ctrl' key to move a single vertex.")print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")print("> When you are done press 'b' to Exit the program\n")video_capture = cv2.VideoCapture(args.video_path)cnt=0rgb_image = Nonewhile video_capture.isOpened():success, frame = video_capture.read()if not success:breakif cnt == 5:rgb_image = frame[:, :, ::-1]cnt += 1video_capture.release()while True:fig, ax = plt.subplots()image = rgb_imageax.imshow(image)p = PatchCollection(patches, alpha=0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect = SelectFromCollection(ax)bbox = plt.connect('key_press_event', onkeypress)break_event = plt.connect('key_press_event', break_loop)plt.show()globSelect.disconnect()

(PS: 若代码出现bug可反馈博主, 及时修改)

车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/62250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB实验——在MongoDB集合中查找文档

在MongoDB集合中查找文档 一、实验目的二、实验原理三、实验步骤1.启动MongoDB数据库、启动MongoDB Shell客户端2.数据准备-->person.json3.指定返回的键4 .包含或不包含 i n 或 in 或 in或nin、$elemMatch(匹配数组)5.OR 查询 $or6.Null、$exists7.…

【JavaScript精通之道】掌握数据遍历:解锁现代化遍历方法,提升开发效率!

​ 🎬 岸边的风:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想,就是为了理想的生活 ! ​ 目录 📚 前言 📘 1. reduce方法 📘 2. forEach方法 📘 3. map方法…

浏览器连不上 Flink WebUI 8081 端口

安装 flink-1.17.0 后,start-cluster.sh 启动,发现浏览器连不上 Flink WebUI 的8081端口。 问题排查: command R,输入cmd,检查宿主机能否ping通虚拟机,发现能ping通。 检查是否有flink以外的任务占用8081…

一体化数据安全平台 uDSP 获“金鼎奖”优秀金融科技解决方案奖

近日,2023 年中国国际金融展“金鼎奖”评选结果揭晓,原点安全打造的“一体化数据安全平台 uDSP”产品获评“金鼎奖”优秀金融科技解决方案奖。该产品目前已广泛应用于银行业、保险企业、证券、医疗、互联网、政务、在线教育等诸多领域。此次获奖再次印证…

如何避免重复消费消息

博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…

这个 AI 机器人会怼人,它是怎么做到的?

近期,机器人“Ameca”接入了 Stable Diffusion,它一边与旁边的人类工程师谈笑风生,一边熟练地用马克笔在白板上画出一只简笔的猫,最后还在白板右下角签名。 当 Ameca 询问工程师是否对它的作品是否满意时,工程师回答“…

光流法相关论文-LK光流法,HS光流法,Farneback光流法,FlowNet: 端到端的深度光流估计, RAFT: 结构化的光流估计

目录 光流法 1. Lucas-Kanade光流法(稀疏光流法): 2. Horn-Schunck光流法(稠密光流法): 3. Farneback光流法: 4 FlowNet: 端到端的深度光流估计: 5. RAFT: 结构化的光流…

基于空洞卷积DCNN与长短期时间记忆模型LSTM的dcnn-lstm的回归预测模型

周末的时候有时间鼓捣的一个小实践,主要就是做的多因子回归预测的任务,关于时序数据建模和回归预测建模我的专栏和系列博文里面已经有了非常详细的介绍了,这里就不再多加赘述了,这里主要是一个模型融合的实践,这里的数…

[论文笔记]DSSM

引言 这是DSSM论文的阅读笔记,后续会有一篇文章来复现它并在中文数据集上验证效果。 本文的标题翻译过来就是利用点击数据学习网页搜索中深层结构化语义模型,这篇论文被归类为信息检索,但也可以用来做文本匹配。 这是一篇经典的工作,在DSSM之前,通常使用传统机器学习的…

iOS 使用coreData存贮页面的模型数据中的字典

我们使用coreData时候,会遇到较为复杂的数据类型的存贮,例如,我们要存一个模型,但是一个模型里面有个字典,这时候,我们该如何存贮呢 如图所示,一个对象中含有一个字典 我们实现一个公共的方法…

【ArcGIS Pro二次开发】(64):多分式标注

在ArcGIS中有时会遇到需要二分式标注的情况,有时甚至是三分式、四分式。 通过输入标注表达式,可以做出如下的效果,但是代码不短,每次都要输一遍也挺麻烦。 网上也有一些分式标注的python工具,但不够直观,于…

港联证券|股票过户费是什么意思?

股票过户费是指在股票商场中,由于股份所有权的转让,双方需求付出的一种买卖费用。这种费用首要是为了付出证券公司和证券中介机构转让股票所发生的各项费用,如代理费、登记费、买卖税等。股票过户费的数额一般是按照股票的数量和买卖金额来核…

Git学习part1

02.尚硅谷_Git&GitHub_为什么要使用版本控制_哔哩哔哩_bilibili 1.Git必要性 记录代码开发的历史状态 ,允许很多人同时修改文件(分布式)且不会丢失记录 2.版本控制工具应该具备的功能 1)协同修改 多人并行不悖的修改服务器端…

rust交叉编译 在mac下编译linux和windows

系统版本macbook proVentura 13.5linux ubuntu22.04.3 LTS/18.04.6 LTSwindowswindows 10 专业版 20H2mac下rustc --versionrustc 1.74.0-nightly (58eefc33a 2023-08-24)查看当前系统支持的交叉编译指定系统版本列表 rustup target list如果已经安装这里会显示(installed)。…

360牛盾点选

网址:https://info.so.com/cache_remove.html 360旗下的产品,协议并不难。 感兴趣的话大家可以去看看,一个AES,坐标需要缩放处理。 鱼导就是牛,还没失败过。 完事儿了哦,大表哥们。以上需要算法&#xff0…

【高阶数据结构】哈希表详解

文章目录 前言1. 哈希的概念2. 哈希冲突3. 哈希函数3.1 直接定址法3.2 除留余数法--(常用)3.3 平方取中法--(了解)3.4 折叠法--(了解)3.5 随机数法--(了解)3.6 数学分析法--(了解) 4. 哈希冲突的解决方法及不同方法对应的哈希表实现4.1 闭散列(开放定址法&#xff0…

安全基础 --- https详解(02)、cookie和session、同源和跨域

https详解(02)--- 数据包扩展 Request --- 请求数据包Response --- 返回数据包 若出现代理则如下图: Proxy --- 代理服务器 (1)http和https的区别 http明文传输,数据未加密;http页面响应速度…

QT可执行程序打包成安装程序

目录 1.将QT程序先放到一个文件中 2.下载QtInstallerFramework-win-x86.exe 3.将setup.exe单独拷贝出来,进行安装测试 4.测试安装后的程序是否可执行 1.将QT程序先放到一个文件中 (1)QT切换到release模式,编译后在构建目录生…

RSA算法与错误敏感攻击

参见《RSA 算法的错误敏感攻击研究与实践》 RSA 算法简介 RSA 算法原理: 1) RSA 算法密钥产生过程 (1)系统随机产生两个大素数 p p p 和 q q q,对这两个数据保密; (2)计算 n p …

RealSense D455启动教程

环境: ubuntu20.04 ros:noetic 视觉传感器:Intel RealSense D455 通过命令安装不成功后改为下面源码安装 1. 安装Intel RealSense SDK 2.0 1.1源码安装 1. 下载源码git clone https://github.com/IntelRealSense/librealsense cd librealsense…