YOLOV8在coco128上的训练

coco128是coco数据集的子集只有128张图片

训练代码main.py

from ultralytics import YOLO# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format

(yolov8) nvidia@nvidia-desktop:~/yolov8$ python main.py

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs

New https://pypi.org/project/ultralytics/8.1.1 available 😃 Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.1.0 🚀 Python-3.10.13 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4060 Ti, 16081MiB)
engine/trainer: task=detect, mode=train, model=yolov8n.pt, data=coco128.yaml, epochs=3, time=None, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train3

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
Model summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs

Transferred 355/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /home/nvidia/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/12
val: Scanning /home/nvidia/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128
Plotting labels to runs/detect/train3/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
3 epochs...

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
        1/3      2.66G      1.226      1.615      1.274        178        640: 100%|██████████| 8/8 [00:03<00:00,  2.63it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:00<00:00,  4.44it/
                   all        128        929      0.645      0.533      0.614      0.455

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
        2/3      2.67G      1.225      1.514      1.268        231        640: 100%|██████████| 8/8 [00:01<00:00,  5.24it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:00<00:00,  5.06it/
                   all        128        929      0.675      0.538      0.626      0.467

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
        3/3      2.71G      1.209      1.448      1.222        178        640: 100%|██████████| 8/8 [00:01<00:00,  5.52it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:00<00:00,  4.99it/
                   all        128        929      0.676      0.548      0.632       0.47

3 epochs completed in 0.003 hours.
Optimizer stripped from runs/detect/train3/weights/last.pt, 6.5MB
Optimizer stripped from runs/detect/train3/weights/best.pt, 6.5MB

Validating runs/detect/train3/weights/best.pt...
Ultralytics YOLOv8.1.0 🚀 Python-3.10.13 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4060 Ti, 16081MiB)
Model summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:03<00:00,  1.13it/
                   all        128        929      0.675      0.549      0.632      0.469
                person        128        254      0.802      0.671      0.769      0.542
               bicycle        128          6      0.581      0.333      0.332      0.286
                   car        128         46      0.844      0.217      0.285      0.178
            motorcycle        128          5      0.687      0.886      0.938      0.721
              airplane        128          6      0.826      0.799      0.903      0.673
                   bus        128          7      0.745      0.714      0.736      0.648
                 train        128          3      0.556      0.667       0.83      0.731
                 truck        128         12          1      0.353      0.498      0.304
                  boat        128          6      0.293      0.167      0.351      0.225
         traffic light        128         14      0.696      0.168      0.202      0.139
             stop sign        128          2      0.966          1      0.995      0.711
                 bench        128          9      0.838      0.575      0.637        0.4
                  bird        128         16      0.923      0.748       0.88       0.53
                   cat        128          4      0.866          1      0.995      0.835
                   dog        128          9      0.704      0.778      0.821      0.633
                 horse        128          2      0.536          1      0.995      0.511
              elephant        128         17      0.851      0.765      0.879      0.669
                  bear        128          1      0.631          1      0.995      0.995
                 zebra        128          4      0.857          1      0.995      0.965
               giraffe        128          9      0.899      0.993      0.973      0.714
              backpack        128          6      0.605      0.333      0.392      0.234
              umbrella        128         18       0.71        0.5      0.663      0.453
               handbag        128         19      0.518     0.0582       0.18     0.0947
                   tie        128          7       0.69      0.642      0.641      0.457
              suitcase        128          4      0.641          1      0.828      0.596
               frisbee        128          5      0.567        0.8      0.759      0.663
                  skis        128          1      0.473          1      0.995      0.497
             snowboard        128          7      0.661      0.714      0.755      0.486
           sports ball        128          6      0.703      0.406      0.503       0.29
                  kite        128         10      0.811        0.5      0.595      0.208
          baseball bat        128          4      0.574      0.362      0.414      0.174
        baseball glove        128          7      0.672      0.429      0.429      0.295
            skateboard        128          5      0.776        0.6        0.6       0.44
         tennis racket        128          7      0.742      0.415      0.529      0.367
                bottle        128         18      0.508      0.389      0.394       0.24
            wine glass        128         16      0.584      0.562      0.581      0.361
                   cup        128         36      0.632      0.287        0.4      0.279
                  fork        128          6      0.597      0.167      0.264      0.193
                 knife        128         16      0.643        0.5      0.612      0.351
                 spoon        128         22      0.554      0.182      0.332       0.18
                  bowl        128         28      0.676      0.571      0.615      0.495
                banana        128          1          0          0      0.166      0.048
              sandwich        128          2      0.394        0.5      0.497      0.497
                orange        128          4          1      0.313      0.995      0.666
              broccoli        128         11      0.471      0.182      0.247      0.221
                carrot        128         24      0.739      0.458      0.658      0.411
               hot dog        128          2       0.65       0.95      0.828      0.796
                 pizza        128          5      0.689          1      0.995       0.86
                 donut        128         14      0.639          1      0.946      0.859
                  cake        128          4      0.658          1      0.995       0.88
                 chair        128         35      0.514      0.514      0.468      0.262
                 couch        128          6      0.746      0.493      0.673      0.497
          potted plant        128         14      0.739      0.643      0.722      0.484
                   bed        128          3      0.768      0.667      0.806      0.636
          dining table        128         13      0.484      0.615      0.504      0.415
                toilet        128          2          1      0.869      0.995      0.946
                    tv        128          2      0.384        0.5      0.695      0.656
                laptop        128          3          1          0      0.696      0.544
                 mouse        128          2          1          0     0.0527    0.00527
                remote        128          8      0.849        0.5      0.583      0.507
            cell phone        128          8          0          0     0.0688     0.0465
             microwave        128          3       0.63      0.667      0.863      0.719
                  oven        128          5      0.472        0.4      0.338      0.269
                  sink        128          6      0.367      0.167      0.232      0.159
          refrigerator        128          5      0.688        0.4      0.647      0.525
                  book        128         29      0.621      0.114      0.328      0.187
                 clock        128          9      0.779      0.781      0.893      0.713
                  vase        128          2      0.418          1      0.828      0.745
              scissors        128          1          1          0      0.249     0.0746
            teddy bear        128         21      0.884      0.381       0.64      0.429
            toothbrush        128          5        0.9        0.6      0.786      0.503
Speed: 3.0ms preprocess, 1.8ms inference, 0.0ms loss, 1.2ms postprocess per image
Results saved to runs/detect/train3
Ultralytics YOLOv8.1.0 🚀 Python-3.10.13 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4060 Ti, 16081MiB)
Model summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs
val: Scanning /home/nvidia/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 8/8 [00:03<00:00,  2.06it/
                   all        128        929      0.658      0.548      0.627      0.466
                person        128        254      0.808       0.68      0.773      0.542
               bicycle        128          6      0.569      0.333      0.326      0.283
                   car        128         46      0.805      0.217      0.285      0.178
            motorcycle        128          5      0.689      0.896      0.898      0.697
              airplane        128          6      0.827      0.803      0.903      0.681
                   bus        128          7      0.681      0.714      0.736      0.648
                 train        128          3      0.551      0.667       0.83      0.731
                 truck        128         12          1      0.374      0.494      0.295
                  boat        128          6      0.261      0.167      0.324       0.14
         traffic light        128         14      0.696      0.168      0.202      0.139
             stop sign        128          2       0.93          1      0.995      0.711
                 bench        128          9      0.842      0.596      0.636        0.4
                  bird        128         16      0.853       0.75      0.866        0.5
                   cat        128          4      0.863          1      0.995      0.835
                   dog        128          9      0.682      0.778      0.821      0.626
                 horse        128          2       0.53          1      0.995      0.515
              elephant        128         17      0.849      0.765      0.879      0.669
                  bear        128          1      0.626          1      0.995      0.995
                 zebra        128          4      0.854          1      0.995      0.965
               giraffe        128          9      0.744      0.971      0.943      0.732
              backpack        128          6      0.613      0.333      0.391      0.238
              umbrella        128         18      0.675        0.5      0.657      0.453
               handbag        128         19      0.554     0.0698      0.173     0.0932
                   tie        128          7      0.698      0.665      0.641      0.457
              suitcase        128          4      0.633          1      0.828      0.596
               frisbee        128          5      0.563        0.8      0.759      0.663
                  skis        128          1      0.461          1      0.995      0.497
             snowboard        128          7      0.657      0.714      0.757      0.484
           sports ball        128          6      0.705      0.411      0.502      0.274
                  kite        128         10      0.801        0.5      0.598      0.206
          baseball bat        128          4      0.577       0.25      0.348      0.174
        baseball glove        128          7      0.638      0.429      0.429      0.295
            skateboard        128          5      0.871        0.6        0.6       0.44
         tennis racket        128          7      0.744      0.419      0.529      0.365
                bottle        128         18      0.469      0.389      0.358      0.217
            wine glass        128         16      0.574      0.562      0.554      0.347
                   cup        128         36      0.566      0.278      0.401      0.286
                  fork        128          6       0.59      0.167      0.228      0.195
                 knife        128         16      0.563        0.5      0.587      0.358
                 spoon        128         22      0.633      0.182      0.331      0.186
                  bowl        128         28      0.737      0.643      0.658      0.498
                banana        128          1          0          0     0.0995      0.042
              sandwich        128          2      0.161      0.241      0.497      0.497
                orange        128          4          1      0.321      0.995      0.666
              broccoli        128         11      0.501      0.182      0.257      0.207
                carrot        128         24      0.728      0.558      0.653      0.418
               hot dog        128          2      0.649      0.946      0.828      0.796
                 pizza        128          5      0.717          1      0.995       0.86
                 donut        128         14      0.637          1       0.94      0.854
                  cake        128          4       0.61          1      0.945      0.845
                 chair        128         35      0.484      0.543      0.472      0.258
                 couch        128          6      0.613        0.5      0.745      0.578
          potted plant        128         14      0.716      0.643      0.723      0.481
                   bed        128          3      0.757      0.667      0.913      0.661
          dining table        128         13      0.457      0.615      0.496      0.391
                toilet        128          2          1      0.875      0.995      0.946
                    tv        128          2      0.378        0.5      0.695      0.656
                laptop        128          3          1          0      0.605      0.484
                 mouse        128          2          1          0     0.0698    0.00698
                remote        128          8      0.845        0.5      0.605      0.514
            cell phone        128          8          0          0     0.0696     0.0469
             microwave        128          3      0.617      0.667      0.863      0.733
                  oven        128          5      0.431        0.4      0.339       0.27
                  sink        128          6      0.378      0.167       0.18      0.131
          refrigerator        128          5      0.684        0.4       0.65      0.517
                  book        128         29      0.637      0.122      0.343      0.195
                 clock        128          9       0.78      0.788      0.894      0.734
                  vase        128          2      0.407          1      0.828      0.745
              scissors        128          1          1          0      0.249     0.0746
            teddy bear        128         21      0.883      0.381      0.634       0.42
            toothbrush        128          5      0.636        0.6      0.736      0.468
Speed: 3.4ms preprocess, 13.3ms inference, 0.0ms loss, 3.5ms postprocess per image
Results saved to runs/detect/train32

Found https://ultralytics.com/images/bus.jpg locally at bus.jpg
image 1/1 /home/nvidia/yolov8/bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 17.2ms
Speed: 4.8ms preprocess, 17.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)
Ultralytics YOLOv8.1.0 🚀 Python-3.10.13 torch-2.0.1+cu117 CPU (Intel Xeon E5-2686 v4 2.30GHz)

PyTorch: starting from 'runs/detect/train3/weights/best.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB)

ONNX: starting export with onnx 1.15.0 opset 17...
============= Diagnostic Run torch.onnx.export version 2.0.1+cu117 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================

ONNX: export success ✅ 0.9s, saved as 'runs/detect/train3/weights/best.onnx' (12.2 MB)

Export complete (2.4s)
Results saved to /home/nvidia/yolov8/runs/detect/train3/weights
Predict:         yolo predict task=detect model=runs/detect/train3/weights/best.onnx imgsz=640
Validate:        yolo val task=detect model=runs/detect/train3/weights/best.onnx imgsz=640 data=/home/nvidia/anaconda3/envs/yolov8/lib/python3.10/site-packages/ultralytics/cfg/datasets/coco128.yaml
Visualize:       https://netron.app 可视化网站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/618394.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20240106----重返学习-在VMware里给centos7设置静态IP地址

在VMware里给centos7设置静态IP地址 场景 学习nginx中&#xff0c;想要设置静态IP地址&#xff0c;以便让win10主环境中的Xshell里能够连接到VMware中的CentOS7上&#xff0c;进而可以在Xshell里进行操作。可以做到如复制粘贴之类的&#xff0c;而不是在虚拟机中的默认终端上…

css如何让两个元素在同一水平线上(文字和svg图片)

一开始写发现这两者不在同一水平线 起初用margin-top margin-bottom来协调 发现效果并不好 1&#xff1a;写法僵硬 2&#xff1a;margin会把div撑破&#xff0c;达不到预期效果&#xff08;padding也是&#xff09; 3. 加了flex布局 之后, 因为我这个是在表格里面,无法居中…

实录分享 | 央企大数据平台架构发展趋势与应用场景的介绍

分享嘉宾&#xff1a; 孟子涵-中国华能集团信息中心平台架构师 2021年华能就与Alluxio建立了合作&#xff0c;共同写了整个华能统一纳管的架构方案。这个方案我认为是现在我们在央企里边比较核心的一套体系&#xff0c;能让全集团所有我们认为重要的数字化资源实现真正的统一集…

Laravel中的lockForUpdate悲观锁

lockForUpdate 是悲观锁&#xff0c;测试就不写了 注意的事项 lockForUpdate 必须在事务中lockForUpdate 被阻塞的查询必须是同样添加了lockForUpdate的语句查询语句走索引&#xff0c;则使用行锁&#xff0c;否则使用表锁 现在举例说明第一项和第二项 开启事务并添加锁 pub…

【K8s学习】

k8s的简单执行流程&#xff1a; Kubernetes Master&#xff08;API Server、Scheduler等组件&#xff09;负责调度Pod到合适的Node上。 当Pod被调度到某个Node时&#xff0c;该Node上的kubelet代理会收到指令并开始执行Pod的生命周期管理任务&#xff0c;包括创建、监控和终止P…

第8章-第4节-Java中字节流的缓冲流

1、缓冲流&#xff1a;属于高级IO流&#xff0c;并不能直接读写数据&#xff0c;需要依赖于基础流。缓冲流的目的是为了提高文件的读写效率&#xff1f;那么是如何提高文件的读写效率的呢&#xff1f; 在内存中设置一个缓冲区&#xff0c;缓冲区的默认大小是8192字节&#xff…

第 3 章 Keepalived 双机热备

技能展示&#xff1a; 会构建双机热备系统 会构建 LVSHA 高可用群集 在这个高度信息化的 IT 时代&#xff0c;企业的生产系统、业务运营、销售和支持&#xff0c;以及日常管理等环节越来越依赖于计算机信息和服务&#xff0c;对高可用&#xff08;HA&#xff09;技术的应用需求…

Nginx+Tomcat负载均衡、动静分离以及Nginx负载均衡和四层代理

目录 NginxTomcat负载均衡、动静分离 Nginx 负载均衡模式&#xff1a; Nginx 四层代理配置&#xff1a; NginxTomcat负载均衡、动静分离 Nginx 服务器&#xff1a;192.168.80.10:80 Tomcat服务器1&#xff1a;192.168.80.100:80 Tomcat服务器2&#xff1a;192.168.80.101:80…

前端安全专题

xss (Cross Site Scripting) 跨站脚本攻击 原理 通常指黑客通过"HTML注入"篡改了网页&#xff0c;插入了恶意的脚本&#xff0c;从而在用户浏览网页时&#xff0c;控制用户浏览器的一种攻击。 常见攻击类型 存储型XSS 攻击者将恶意的 JavaScript 脚本存储在网站…

【分布式微服务专题】SpringSecurity OAuth2快速入门

目录 前言阅读对象阅读导航前置知识笔记正文一、OAuth2 介绍1.1 使用场景*1.2 基本概念&#xff08;角色&#xff09;1.3 优缺点 二、OAuth2的设计思路2.1 客户端授权模式2.1.0 基本参数说明2.1.1 授权码模式2.1.2 简化&#xff08;隐式&#xff09;模式2.1.3 密码模式2.1.4 客…

Go 语言中的锁

1. 并发基础 并发是同时发生多个计算或事件的能力。并发通常通过同时执行多个任务或进程来实现&#xff0c;这些任务或进程共享相同的资源&#xff08;例如内存或处理器&#xff09;。并发使用的基本机制被称为锁。在Go语言中&#xff0c;锁是一个类型变量&#xff0c;它包含一…

Redis 淘汰策略有哪些?

Redis 淘汰策略有哪些&#xff1f; Redis 中有多种淘汰策略&#xff08;Eviction Policy&#xff09;&#xff0c;用于在内存不足时选择要移除的键值对。以下是一些常见的淘汰策略&#xff1a; No Eviction&#xff08;无淘汰&#xff09;&#xff1a; 默认策略&#xff0c;当…

如何使用人工智能优化 DevOps?

DevOps 和人工智能密不可分&#xff0c;影响着各种业务。DevOps 可以加快产品开发速度并简化现有部署的维护&#xff0c;而 AI 则可以改变整个系统的功能。DevOps团队可以依靠人工智能和机器学习来进行数据集成、测试、评估和发布系统。更重要的是&#xff0c;人工智能和机器学…

轻松掌握构建工具:Webpack、Gulp、Grunt 和 Rollup 的使用技巧(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

【大厂算法面试冲刺班】day0:数据范围反推时间复杂度

常见算法的时间复杂度 规定n是数组的长度/树或图的节点数 二分查找&#xff1a;O(logn) 双指针/滑动窗口&#xff1a;O(n) DFS/BFS&#xff1a;O(n) 构建前缀和&#xff1a;O(n) 查找前缀和&#xff1a;O(1) 一维动态规划&#xff1a;O(n) 二维动态规划&#xff1a;O(n^2) 回溯…

【深度学习每日小知识】Logistic Loss 逻辑回归

逻辑回归的损失函数 线性回归的损失函数是平方损失。逻辑回归的损失函数是对数损失&#xff0c;定义如下&#xff1a; L o g L o s s ∑ ( x , y ) ∈ D − y log ⁡ ( y ′ ) − ( 1 − y ) log ⁡ ( 1 − y ′ ) LogLoss\sum_{(x,y)\in D}-y\log(y)-(1-y)\log(1-y) LogLoss…

卡尔曼滤波:理论与代码

卡尔曼滤波&#xff1a;理论与代码 引言 卡尔曼滤波是一种用于估计系统状态的优化技术&#xff0c;特别适用于含有噪声的测量数据和系统动态变化的情况。本文将简单探讨卡尔曼滤波的理论基础、数学公式的推导&#xff0c;并通过Python代码示例演示其在实际应用中的效果。 一…

基于SSM+vue的篮球场预约管理系统(Java毕业设计)

大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的方法。无论你是…

Python 最新版本 3.12.1 环境配置(windows)

文章目录 python 3.12.1环境安装3.12.1 网盘下载3.12.1 官网下载 python 安装完成测试第一个 python 程序Hello Python python 3.12.1环境安装 3.12.1 网盘下载 python 3.12.1 百度网盘地址&#xff1a;https://pan.baidu.com/s/1SAcH_uH0T3DiERn6AZeQlg?pwd4242 提取码&a…

不同activity项目创建时的区别

在 Android Studio 中创建项目时&#xff0c;可以选择创建不同类型的 Activity 作为应用程序的入口点。其中&#xff0c;包括 Empty Activity、Basic Activity、Empty Compose Activity 和 Basic Compose Activity 四种类型。 Empty Activity&#xff1a;这是最简单的 Activity…