[自动驾驶算法][从0开始轨迹预测]:一、坐标和坐标系变换

既然要从0开始轨迹预测,那从哪开始写起呢?回想下自己的学习历程,真正有挑战性的不是模型结构,不是繁琐的训练和调参,而是数据的制作!!!

笔者自认为不是一个数学基础牢固的人,那么我们的轨迹预测之旅就从坐标转换开始吧~~~

由难至简,才能做到【删繁就简三秋树,领异标新二月花】,专注于轨迹预测的核心算法。


坐标和坐标系变换

    • 1. 坐标系:
    • 2. 坐标转换与坐标系转换
      • 2.1 2D坐标转换
        • 1. 平移(Translation)
        • 2. 缩放(Scaling)
        • 3. 旋转(Rotation)
      • 2.2 2D坐标系转换
        • 1. 坐标系平移
        • 2. 坐标系旋转
        • 3. 2D坐标系旋转平移总结
      • 2.3 3D坐标系转换
        • 1. 3D坐标系平移
        • 2. 3D坐标系旋转

1. 坐标系:

二维直角坐标系,笛卡尔坐标系(Cartesian coordinate system),由两条相互垂直、相交于原点的数线构成的。
在这里插入图片描述

直角坐标系也可以推广至三维空间与高维空间 (higher dimension)。在原本的二维直角坐标系,再添加一个垂直于x-轴,y-轴的坐标轴,称为z-轴,叫做三维直角坐标系。

那么三维直角坐标系的x,y,z-轴的指向,以及绕x,y,z-轴旋转的方向该如何确定呢??

三维直角坐标系分两种,左手坐标系和右手坐标系,那么为什么要用左手和右手来区分呢?这是因为当确定了x-轴,y-轴方向之后,z-轴的方向有两种可能,它可以通过左手或右手来确定。

下面就是这两个坐标系 x,y,z-轴指向 的规则示意图(图中固定了x轴的正方向向右,y轴的正方向向上),其中大拇指、食指、中指分别对应于x-轴、y-轴、z-轴:

对坐标系使用左手与右手的命名,有一个作用就是用来方便 判断旋转的正方向,这就是左手螺旋法则和右手螺旋法则。例如对左手坐标系,确定一个旋转轴后,左手握住拳头,拇指指向旋转轴的正方向,四指弯曲的方向为旋转的正方向。相应地,右手坐标系就用右手来判定。确定了旋转的正方向后,在公式计算中就很容易知道是该使用正角度还是负角度了。下图就是右手的例子:
在这里插入图片描述

给定任意一个旋转角度的三维坐标系,如果按上面的方法判断旋转正方向,首先,你得确定这个坐标系是左手坐标系还是右手坐标系,这时你会先拿出一只手来,像上图一样摆好三根手指的姿势来比对给定坐标系的x、y、z轴正方向看是否一致。然后根据旋转轴的正方向,用相应的手来判断旋转正方向。

那么有什么快速判断的方法吗?
在这里插入图片描述

上图给出左右手坐标系绕z轴的旋转方向,从我们眼睛看屏幕的角度来看,它们绕z轴旋转的正方向都是逆时针。同理,绕y-轴和x-轴也可以获得相同的结论。则:对于任意旋转角度的三维坐标系(无需区分左右手),绕某一坐标轴旋转的正方向,与另外两个坐标轴的正方向顶端按X—>Y—>Z—>X的顺序进行指向的方向一致。


2. 坐标转换与坐标系转换

自由度的定义:自由度(Degree of Freedom,简称DOF)是指系统中可以自由变化的独立参数的数量,也就是系统的状态空间维度(有几个量可以调节)。

公式预警!!! 都是超级简单的向量的相加,相信我读完你会有收获哒!!!

2.1 2D坐标转换

1. 平移(Translation)

在2D空间中,我们经常需要将一个点平移到另一个位置(如下图所示)。假设空间中的一点P,其用坐标表示为(x,y);将其向 x方向平移 tx,向y方向平移ty, 假设平移后点的坐标为(x’,y’),则上述点的平移操作可以归纳为:
x ′ = x + t x y ’ = y + t y O P ′ → = O P → + P P ′ → x' = x+t_x \\y’ = y+t_y \\ \overrightarrow{OP'} = \overrightarrow{OP} + \overrightarrow{PP'} x=x+txy=y+tyOP =OP +PP
在这里插入图片描述

公式(1)又可以采用矩阵表述如下:

[ x ′ y ′ ] = [ 1 0 t x 0 1 t y ] [ x y ] \left[ \begin{array}{cc} x' \\ y'\end{array} \right] = \left[ \begin{array}{cc} 1 & 0&t_x\\ 0&1&t_y\end{array} \right]\left[ \begin{array}{cc} x \\ y\end{array} \right] [xy]=[1001txty][xy]

2. 缩放(Scaling)

​ 其中,s_x和s_y分别是沿x和y轴的缩放因子。
x ′ = s x x y ’ = s y s O P ′ → = s O P → x' = s_xx \\y’ = s_ys \\ \overrightarrow{OP'} = s\overrightarrow{OP} x=sxxy=sysOP =sOP

在这里插入图片描述

​ 齐次坐标的形式:
[ x ′ y ′ 1 ] = [ s x 0 1 0 s y 1 0 0 1 ] [ x y 1 ] \left[ \begin{array}{cc} x' \\ y'\\ 1\end{array} \right] = \left[ \begin{array}{cc} s_x & 0&1\\ 0&s_y&1 \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x \\ y \\1\end{array} \right] xy1 = sx000sy0111 xy1

3. 旋转(Rotation)

点P(x,y)绕坐标系原点旋转 θ \theta θ角得到点P’(x‘,y’)有:

在这里插入图片描述

将OP与x-轴正方向的夹角记做 β \beta β,OP的长度为r,且 r c o s β = x rcos\beta = x rcosβ=x, r s i n β = y rsin\beta=y rsinβ=y,则P‘的坐标可推导为:
x ′ = r c o s ( θ + β ) = r ( c o s θ c o s β − s i n θ s i n β ) = r c o s β c o s θ − r s i n β s i n θ y ′ = r s i n ( θ + β ) = r ( s i n θ c o s β + c o s θ s i n β ) = r c o s β s i n θ + r s i n β c o s θ x' = rcos(\theta + \beta) = r(cos\theta cos\beta - sin\theta sin\beta) = rcos\beta cos\theta -rsin\beta sin\theta \\ y' = rsin(\theta + \beta) = r(sin\theta cos\beta + cos\theta sin\beta) = rcos\beta sin\theta +rsin\beta cos\theta \\ x=rcos(θ+β)=r(cosθcosβsinθsinβ)=rcosβcosθrsinβsinθy=rsin(θ+β)=r(sinθcosβ+cosθsinβ)=rcosβsinθ+rsinβcosθ

x ′ = x c o s θ − y s i n θ y ′ = x s i n θ + y c o s θ x' = xcos\theta - ysin\theta \\ y'=xsin\theta+ycos\theta x=xcosθysinθy=xsinθ+ycosθ

同理写成齐次坐标的形式:
[ x ′ y ′ 1 ] = [ c o s θ − s i n θ 1 s i n θ c o s θ 1 0 0 1 ] [ x y 1 ] \left[ \begin{array}{cc} x' \\ y'\\ 1\end{array} \right] = \left[ \begin{array}{cc} cos\theta & -sin\theta&1\\ sin\theta&cos\theta&1 \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x \\ y \\1\end{array} \right] xy1 = cosθsinθ0sinθcosθ0111 xy1

2.2 2D坐标系转换

理解了2D坐标转换,2D坐标系的转换(坐标点不动,坐标系动-横看成岭侧成峰)可以看成2D坐标转换的逆转换:

​ 坐标系向左平移 = 坐标点在原坐标系基础上向右平移;

​ 坐标系绕轴顺时针旋转 = 坐标点在原坐标系的基础上绕轴逆时针旋转;

1. 坐标系平移

红色坐标系相对于黑色坐标系中平移的距离为(i, j)

红色点在红色坐标系的位置为(x, y),则红色点在黑色坐标系的表示如下图所示:

图中示例,坐标系向左向下平移,相当于P点像右像上平移。

在这里插入图片描述

x ′ = i + x y ′ = j + y O P ′ → = O O ′ → + O ′ P → = ( i , j ) + ( x , y ) = ( i + x , j + y ) x'=i+x \\ y'=j+y \\ \overrightarrow{OP'} = \overrightarrow{OO'}+\overrightarrow{O'P} = (i, j) + (x, y) = (i+x,j+y) x=i+xy=j+yOP =OO +OP =(i,j)+(x,y)=(i+x,j+y)
​ 将坐标系的平移写成齐次坐标的形式:
[ x ′ y ′ 1 ] = [ 1 0 i 0 1 j 0 0 1 ] [ x y 1 ] \left[ \begin{array}{cc} x' \\ y'\\ 1\end{array} \right] = \left[ \begin{array}{cc} 1 & 0&i\\ 0&1&j \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x \\ y \\1\end{array} \right] xy1 = 100010ij1 xy1

2. 坐标系旋转

在这里插入图片描述

已知 红点P在蓝色坐标系的位置(x, y),也知道蓝色坐标系相较于黑色坐标系顺时针旋转的角度θ

求解: 红点在黑色坐标系同的位置(X‘, Y’)?

蓝色坐标系相较于黑色坐标系顺时针旋转的角度θ,相当于计算P点在蓝色系内绕远点逆时针旋转θ

向量分解的方法推导:

将P点的坐标,沿黑色坐标系分解:

在这里插入图片描述

x ′ = x c o s θ − y s i n θ y ′ = x s i n θ + y c o s θ x'=xcos\theta-ysin\theta \\ y'=xsin\theta+ycos\theta x=xcosθysinθy=xsinθ+ycosθ
写成齐次坐标的形式:
[ x ′ y ′ 1 ] = [ c o s θ − s i n θ 1 s i n θ c o s θ 1 0 0 1 ] [ x y 1 ] \left[ \begin{array}{cc} x' \\ y'\\ 1\end{array} \right] = \left[ \begin{array}{cc} cos\theta & -sin\theta&1\\ sin\theta&cos\theta&1 \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x \\ y \\1\end{array} \right] xy1 = cosθsinθ0sinθcosθ0111 xy1

3. 2D坐标系旋转平移总结

已知 红点在蓝色坐标系的位置P(xb, yb),也知道蓝色坐标系相较于黑色坐标系 旋转的角度θ, 其中 蓝色坐标系的原点在黑色坐标系中的位置为(δx, δy).

求解: 红点在黑色坐标系同的位置(xa, ya)?

在这里插入图片描述

以向量的方式推导:

​ P点在A系下的坐标可以用向量 O a P → \overrightarrow{O_aP} OaP 表示:
O a P → = O a O b → + O b P → \overrightarrow{O_aP} = \overrightarrow{O_aO_b}+\overrightarrow{O_bP} OaP =OaOb +ObP
​ 其中 O a O b → = ( δ x , δ y ) \overrightarrow{O_aO_b}=(\delta_x,\delta_y) OaOb =(δx,δy),那么我们该如何表示向量 O b P → \overrightarrow{O_bP} ObP 的坐标值呢?

​ 在此处有个误区,大家可能会觉得 O b P → = ( x b , y b ) \overrightarrow{O_bP}=(x_b,y_b) ObP =(xb,yb)。其实不是这样的,(xb,yb)坐标表示的是点P在B坐标系中的位置,视角是站在B坐标系上的,此时我们的视角应该是在A坐标系,或者是和A坐标系平行的。

所以,我们应该将B坐标系进行旋转,保证和A坐标系平行的,如下图所示。

在这里插入图片描述

根据前面旋转部分的推导,我们可以得到:
O b P → = [ c o s θ − s i n θ s i n θ c o s θ ] [ x b y b ] \overrightarrow{O_bP}=\left[ \begin{array}{cc} cos\theta & -sin\theta\\ sin\theta&cos\theta \end{array} \right]\left[ \begin{array}{cc} x_b \\ y_b \end{array} \right] ObP =[cosθsinθsinθcosθ][xbyb]
则根据公式(14),
O a P → = [ x a y a ] = [ δ x δ y ] + [ c o s θ − s i n θ s i n θ c o s θ ] [ x b y b ] = [ c o s θ ∗ x b + δ x − s i n θ ∗ y b s i n θ ∗ x b + δ y + c o s θ ∗ y b ] \overrightarrow{O_aP} = \left[\begin{array}{} x_a \\ y_a \end{array}\right] =\left[\begin{array}{} \delta_x \\ \delta_y \end{array}\right] + \left[\begin{array}{} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{array}\right]\left[\begin{array}{} x_b \\ y_b \end{array}\right] = \left[\begin{array}{} cos\theta*x_b+\delta_x -sin\theta*y_b \\ sin\theta*x_b+\delta_y + cos\theta*y_b \end{array}\right] OaP =[xaya]=[δxδy]+[cosθsinθsinθcosθ][xbyb]=[cosθxb+δxsinθybsinθxb+δy+cosθyb]
写成齐次坐标的形式:
[ x a y a 1 ] = [ c o s θ − s i n θ δ x s i n θ c o s θ δ y 0 0 1 ] [ x b y b 1 ] \left[ \begin{array}{cc} x_a \\ y_a\\ 1\end{array} \right] = \left[ \begin{array}{cc} cos\theta & -sin\theta&\delta_x\\ sin\theta&cos\theta&\delta_y \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x_b \\ y_b \\1\end{array} \right] xaya1 = cosθsinθ0sinθcosθ0δxδy1 xbyb1

T T T表示transform,变换的意思。

B A T ^A_BT BAT表示的是 由B坐标系变换为A坐标系的意思。

对于2D坐标系的旋转和平移大致上我们可以得到以下:
P a = B A T ⋅ P b P b = B A T − 1 ⋅ P a P_a =_B^AT ·P_b \\ P_b =_B^AT^{-1} ·P_a Pa=BATPbPb=BAT1Pa

2.3 3D坐标系转换

3D坐标系转换,仅仅是添加了一维z-轴,所使用的基础公式和2D并无差异。

1. 3D坐标系平移

同样已知 红色点在蓝色坐标系的位置为(x1,y1,z1)

蓝色坐标系的原点在黑色坐标系中的位置为(δx,δy,δz)

求解: 红色点在黑色坐标系中的位置点(x2,y2,z2)?

在这里插入图片描述

根据向量的加法有:
O 2 P → = O 2 O 1 → + O 1 P → = ( δ x , δ y , δ z ) + ( x 1 , y 1 , z 1 ) \overrightarrow{O_2P} = \overrightarrow{O_2O_1} + \overrightarrow{O_1P} = (\delta_x,\delta_y,\delta_z)+(x_1,y_1,z_1) O2P =O2O1 +O1P =(δx,δy,δz)+(x1,y1,z1)
同样,用齐次坐标表示:
[ x 2 y 2 z 2 ] = [ 1 0 0 δ x 0 1 0 δ y 0 0 1 δ z ] [ x 1 y 1 z 1 ] \left[\begin{array}{cc} x_2 \\ y_2 \\z_2 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0&0&\delta_x\\ 0&1&0&\delta_y \\0&0&1&\delta_z\end{array} \right]\left[ \begin{array}{cc} x_1 \\ y_1 \\z_1\end{array} \right] x2y2z2 = 100010001δxδyδz x1y1z1

2. 3D坐标系旋转
  1. 绕z轴旋转(同2D旋转):

    绕z-轴旋转,z坐标保持不变
    [ x 2 y 2 z 2 ] = [ c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ] [ x 1 y 1 z 1 ] \left[ \begin{array}{cc} x_2 \\ y_2\\ z_2\end{array} \right] = \left[ \begin{array}{cc} cos\theta & -sin\theta&0\\ sin\theta&cos\theta&0 \\ 0&0&1\end{array} \right]\left[ \begin{array}{cc} x_1 \\ y_1 \\z_1\end{array} \right] x2y2z2 = cosθsinθ0sinθcosθ0001 x1y1z1

  2. 绕y轴旋转:

    绕y-轴旋转,z坐标保持不变

[ x 2 y 2 z 2 ] = [ c o s θ 0 s i n θ 0 1 0 − s i n θ 0 c o s θ ] [ x 1 y 1 z 1 ] \left[ \begin{array}{cc} x_2 \\ y_2\\ z_2\end{array} \right] = \left[ \begin{array}{cc} cos\theta &0& sin\theta\\0&1&0\\ -sin\theta&0&cos\theta \\ \end{array} \right]\left[ \begin{array}{cc} x_1 \\ y_1 \\z_1\end{array} \right] x2y2z2 = cosθ0sinθ010sinθ0cosθ x1y1z1

你是不是也发现了,这个公式好像和2D旋转的不大一样?别急,手动画一下旋转图像你就会明白的

在这里插入图片描述

还记得前面介绍,旋转角的正负吗?忘记的同学可以看一下本篇文章的第一部分坐标系, 旋转的正方向为X->Y->Z->X,而此时绕y轴旋转的角度theta,为旋转的负方向,所以此时应在原旋转矩阵的基础上取逆矩阵即可~,这也是为什么绕Y轴旋转的公式不一样的原因!!!

  1. 绕X轴旋转:

    x坐标保持不变
    [ x 2 y 2 z 2 ] = [ 1 0 0 0 c o s θ s i n θ 0 − s i n θ c o s θ ] [ x 1 y 1 z 1 ] \left[ \begin{array}{cc} x_2 \\ y_2\\ z_2\end{array} \right] = \left[ \begin{array}{cc} 1&0&0\\0&cos\theta & sin\theta\\ 0&-sin\theta&cos\theta \\ \end{array} \right]\left[ \begin{array}{cc} x_1 \\ y_1 \\z_1\end{array} \right] x2y2z2 = 1000cosθsinθ0sinθcosθ x1y1z1

  2. 3D坐标系的旋转:
    R z y x = R x ( α ) R y ( β ) R z ( γ ) R_{zyx}=R_x(\alpha)R_y(\beta)R_z(\gamma) Rzyx=Rx(α)Ry(β)Rz(γ)
    将上述三个矩阵依次相乘:
    在这里插入图片描述

​ 上述矩阵看成:
[ R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33 ] \left[ \begin{array}{cc} R_{11}&R_{12}&R_{13} \\ R_{21}&R_{22}&R_{23}\\ R_{31}&R_{32}&R_{33}\end{array} \right] R11R21R31R12R22R32R13R23R33

如果我想通过旋转矩阵反求旋转角度,该如何做呢?观察旋转矩阵各个项之间的关系。

三角函数中,如果要求解一个角度值,可以通过:
θ = a r c t a n ( s i n θ , c o s θ ) \theta=arctan(sin\theta,cos\theta) θ=arctan(sinθ,cosθ)

求绕x-轴旋转的角度
α = a r c t a n ( R 21 , R 11 ) \alpha=arctan(R_{21},R_{11}) α=arctan(R21,R11)
求绕y-轴旋转的角度:

​ 求解绕y轴旋转有点麻烦,已知公式(24),则:
β = a r c t a n ( − R 31 , c o s β ) \beta=arctan(-R_{31},cos\beta) β=arctan(R31,cosβ)
​ 那么 c o s β cos\beta cosβ怎么求呢?我们继续观察 R 11 R_{11} R11 R 21 R_{21} R21, 他们分别是 c o s ( α ) ⋅ c o s ( β ) cos(α)⋅cos(β) cos(α)cos(β) s i n ( α ) ⋅ c o s ( β ) sin(α)⋅cos(β) sin(α)cos(β)

​ 尝试使用 R 11 2 + R 21 2 \sqrt{R_{11}^2+R_{21}^2} R112+R212 ,化简后得到:
c o s β = R 11 2 + R 21 2 cos\beta =\sqrt{R_{11}^2+R_{21}^2} cosβ=R112+R212
​ 则:
β = a r c t a n ( − R 31 , R 11 2 + R 21 2 ) \beta=arctan(-R_{31},\sqrt{R_{11}^2+R_{21}^2}) β=arctan(R31,R112+R212 )
求绕z-轴的旋转角度:
γ = a r c t a n ( R 32 , R 33 ) \gamma=arctan(R_{32},R_{33}) γ=arctan(R32,R33)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/617430.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用SVN查看旧版本

和目录 第一步:打开SVN客户端 第二步:浏览历史版本 第三步:还原历史版本 结论 Subversion (缩写为SVN)是一种常用的版本控制系统,它可以帮助团队协作开发软件项目。除了基本的版本控制功能外,SVN还提供了许多其他功…

AutoCAD保存打开新建等操作变成命令行

文章标签没cad,就设了个3d 变成命令行的表现形式 如图点“另存为”后的样子: 如图点“打开”后的样子: 改回图形界面 键入filedia: 空格确认后,输入1,再空格确认: 图形界面回来了&#xff1a…

Linux/SwagShop

Enumeration nmap 仍然一样,先使用nmap探索目标开放端口情况 看到开启了22端口和80端口,还是一样的,先从80端口开始探索,从nmap给出的结果,我们可以看到有一个域名,因此在/etc/hosts中添加域名到IP的映射…

Linux的权限(2)

目录 Linux的(事物属性)文件权限 文件权限值得表示方法 字符表示方法 8进制表示方法 文件访问权限得相关设置方法 chmod修改权限法1 chmod修改权限法2 文件的角色(拥有者/所属者)修改 chown拥有者 chgrp所属者 &…

业务向——基于淘宝联盟平台的CPS

业务向——基于淘宝联盟平台的CPS 导读小试牛刀签名商品活动订单获取及用户 导读 上篇文章我们分享了多多进宝平台,那么这篇文章想继续带来CPS业务的分享,这次玩转的平台是淘宝联盟。在对接的过程中,也是踩了一些坑,特别是对于订…

车规MCU开发之E2E协议

啥是E2E? E2E的原理: 1. 发送端:发送数据包添加E2E保护头 2. 接收端:接收数据包校验E2E保护头 E2E例子 - profile 11为例 E2E_P11ConfigType wk_stP11Cfg { .CounterOffset 8, .CRCOffset 0, .DataID …

Jenkins安装和配置

拉取Jenkins镜像 docker pull jenkins/jenkins 编写jenkins_docker.yml version: "3.1" services:jenkins:image: jenkins/jenkinscontainer_name: jenkinsports:- 8080:8080- 50000:50000volumes:- ./data/:/var/jenkins_home/首次启动会因为数据卷data目录没有权限…

30天精通Nodejs--第十七天:express-路由配置

目录 引言基础路由配置路由参数与查询参数路由前缀与子路由路由重定向结语 引言 上篇文章我们简单介绍了express的基础用法,包括express的安装、创建路由及项目启动,对express有了一个基础的了解,这篇开始我们将详细介绍express的一些高级用…

IDEA—初始化配置

注:以下红框圈的部分,均为已设置好的 外观与行为 编辑器 高级设置 按两次 shift 弹出提示问题解决

神经网络|张量tensor(待完善)

文章目录 tensor/张量什么是tensor?如何用代码实现tensortensor在神经网络中的应用 其他 tensor/张量 什么是tensor? 张量是用来探究一个点在各个切面(一共三个切面)和各个方向(x,y,z三个方向&…

蚁群算法(ACO)解决旅行商(TSP)问题的python实现

TSP问题 旅行商问题(Travelling Salesman Problem, 简记TSP,亦称货郎担问题):设有n个城市和距离矩阵D [dij],其中dij表示城市i到城市j的距离,i, j 1, 2 … n,则问题是要找出遍访每个城市恰好一次的一条回…

【kafka】记录用-----------1

主题(topic):消息的第一次分类 根据人为的划分条件将消息分成不同的主题 主题的划分是人为的根据不同的任务情景去划分 比如,我们有两个主题,一个是"订单",另一个是"库存"。每个主题代…

强化学习应用(二):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

【JAVA】谈谈 ReadWriteLock 和 StampedLock

🍎个人博客:个人主页 🏆个人专栏:JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 ReadWriteLock(读写锁) 基本原理: 接口和实现: 用法示例: StampedL…

Camunda Cluster

Rest API:无状态,根据权重路由。控制台API:webapp 登录有状态,根据IP路由。 nginx.conf upstream rest_proxy {server localhost:8080 weight1;server localhost:8081 weight1;server localhost:8082 weight1; }upstream webapp…

《2024 年 Web3.0 数字资产趋势报告》(二)

撰文:方军、周芳鸽、李祺虹、张睿彬,Uweb 编辑:Nona,Techub News 点击关注公众号获取完整报告 接下来我们将继续和大家分享《2024 年 Web3.0 数字资产趋势报告》中其余部分。

PyCharm连接服务器(利用PyCharm实现远程开发)

利用PyCharm实现远程开发 注:该功能只有在PyCharm专业版下才可以使用,并且必须是官方的正版许可,破解版的是不可以使用的!!!可以通过免费教育许可申请使用权限(申请流程)。 pycharm…

在Java中正确使用Optional

Optional类是在Java 8中引入的,用于解决NullPointerException的问题。 java.util.Optional类是一个泛型类型的类,只包含一个类型为T的值。其目的是提供对可能为null的类型T的引用对象的更安全的替代方案。但是,只有在正确使用的情况下&#…

HarmonyOS开发FA应用模型下多个页面的声明方式

目录 方式1 方式2 HarmonyOS配套的IDE是DevEco Studio,目前的版本是3.1。官网可以直接下载 HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者 ​ 方式1 ​在DevEco Studio如果是在pages目录通过右键New->ArkTS File生成的文件,需要注意&…

鸿蒙原生应用再添新丁!天眼查 入局鸿蒙

鸿蒙原生应用再添新丁!天眼查 入局鸿蒙 来自 HarmonyOS 微博1月12日消息,#天眼查启动鸿蒙原生应用开发#作为累计用户数超6亿的头部商业信息查询平台,天眼查可以为商家企业,职场人士以及普通消费者等用户便捷和安全地提供查询海量…