利用矩阵特征值解决微分方程【1】

目录

一. 特征值介绍

二. 单变量常微分方程

三. 利用矩阵解决微分方程问题

四. 小结

4.1 矩阵论

4.2 特征值与特征向量内涵

4.3 应用


一. 特征值介绍

线性代数有两大基础问题:

Ax=b

Ax=\lambda x

如果A为对角阵的话,那么Ax=\lambda x问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。

在已知Ax=b解的情况下,可以利用矩阵行列式解决Ax=\lambda x问题。根据Cramer定则:

x=A^{-1}b

将以下矩阵的行列式看成一个多项式:

det(A-\lambda I)

该多项式的根即为特征值。当矩阵维度较高时,这个方法就很难计算。

二. 单变量常微分方程

假定某函数为u(t),其中t为自变量,满足如下微分方程:

回忆:

e^0=1

\frac{d e^{at}}{dt}=ae^{at}

很容易求出该单变量常微分方程的解为:

当a大于0,函数无界(unstable);当a等于0,函数为常函数(stable);当a小于0时,函数趋近于0(stable);

当a为复数时,如下:

a=\alpha+i\beta

实数部分\alpha的分析与以上类似。虚数部分则会产生振荡,如下:

e^{i\beta t}=cos\beta t+isin\beta t

三. 利用矩阵解决微分方程问题

给出以下常微分方程问题:

因为初始条件都是t=0,所以这类问题又被称之为初值问题(initial value problem),其中初值在这个地方指的就是8和5。

如果将t看成时间的话,该问题的本质则是寻找v(t)和w(t),其中t大于0

一个常微分方程问题是怎么样跟矩阵联系在一起的呢?

首先,我们将两个未知的函数写成向量的形式,叫做u(t),如下:

那么初始值则是u(0),如下:

系数矩阵叫做A,如下:

那么原始的两个微分方程则可以合并成一个向量形式的微分方程,如下:

很明显这是一阶求导的方程,整个运算都是线性关系。系数均为常数结构,也就是矩阵A与时间t无关。

根据经验,v(t)和w(t)均为指数函数的结果,如果可以设两个函数的形式如下:

将两者合并为向量形式,如下:

很明显该结果满足我们想要的du/dt=Au的结构。将函数v=e^{\lambda t}yw=e^{\lambda t}x带入原微分方程中,可得:

可以发现这两个方程都出现了e^{\lambda t},可以直接约简。这个时候最神奇的地方就出现了,当约简完后,你会发现:

这不就是特征值方程!形式如下:

Ax=\lambda x

该特征值方程A已知,\lambda和x未知。也就是\lambda为矩阵A的特征值,x为矩阵A的特征向量。接下来就可以直接利用我们熟悉的线性代数知识直接求解即可。

四. 小结

4.1 矩阵论

矩阵论是一个重要的数学分支,属于代数学范畴,需要抽象思维能力、数学建模能力以及科学计算能力。目前矩阵论的思想方法已经渗透到网络安全、经济管理以及军事学等各个领域,尤其是上世纪五六十年代以来,随着计算机科学技术的发展,网络工程、信息工程、测绘工程以及密码工程等各个专业都需要利用矩阵论课。矩阵论包括线性空间与线性变换、矩阵的范数理论、矩阵分析、矩阵分解、矩阵的特征值估计以及矩阵的广义逆等。

矩阵论有几个细节很重要,比如特征值理论线性空间线性变换矩阵运算多项式理论等,然后将其应用于行列式的计算矩阵的初等变换线性方程组解的判定和解的结构等。借助数值计算软件 matlab等,可以用来建立数学模型,然后构建算法,利用科学计算方法最终解决实际问题。

方阵的特征值与特征向量是一个重要的数学概念,在数据处理的统计方法、通信网络中的信息检索、图像压缩与恢复、机械振动等多个方面都有广泛的应用,例如,工程技术中的振动问题和稳定性问题,在数值上大都归结为矩阵的特征值与特征向量的问题。

4.2 特征值与特征向量内涵

矩阵的特征值和特征向量定义高度抽象,设 A 是 n 阶方阵,若存在数λ 和 n 维非零向量 x,使得 Ax = λx 成立,则称数λ 是方阵 A 的特征值,非零向量 x 为方阵 A 的特征向量。

这个时候可以引入谱分解定理。

设矩阵A可以做如下分解:

A=P\Lambda P^{-1}

其中矩阵P的列是A的单位正交特征向量:

u_1,u_2,\cdots,u_n

相应的特征值为:

\lambda_1,\lambda_2,\cdots,\lambda_n

可以将这n个特征值形成n阶的对角阵\Lambda。因为矩阵P为单位正交矩阵,所以可得:

P^{-1}=P^T

由此以上可得:

由上述定义可知,方阵的特征向量是经过矩阵变换后,保持方向不变,只是进行长度扩大或者缩小的向量,而特征值反映了特征向量在矩阵变换时的扩大或者缩小的倍数。结合谱分解定理可得,一个方阵完全可以由它的特征向量表示,特征值即是方阵在对应特征方向上的贡献率大小,即一个方阵可由特征值与特征向量组成的“特征”来表示,特征向量的几何直观如图 下所示:

4.3 应用

矩阵的各种分解形式为矩阵的科学计算提供了强有力的理论支撑,通过矩阵分解可以达到对矩阵进行降维的目的,从而减小内存量,简化运算。这时特征值与特征向量可以应用于图像压缩技术。

假定一幅图像有 m*n个像素,如果将这 mn 个数据一起传送,往往数据量会很大。因此,我们考虑在信息的发送端传送比较少的数据,并且在接收端利用这些传送数据对图像进行重构。这就是图像压缩的最初想法,不过图像压缩要求较高的压缩比,同时不产生失真。矩阵的奇异值分解可以将任意一个矩阵和一个只包含几个(非零)奇异值的矩阵对应。把“大”的矩阵对应到“小”的矩阵,这就产生了“压缩”的思想,并且利用矩阵的计算可以恢复压缩前的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/616255.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot药物不良反应智能监测系统源码

一、系统简介 ADR指的是药品不良反应,即在合格药品在正常用法用量下,出现与用药目的无关或意外的有害反应。ADR数据辨别引擎、药品ADR信号主动监测引擎、ADR处置行为分析引擎。ADR数据辨别引擎,通过主动监测患者具象临床指标,比如…

西门子S7-1200直接连接MySQL数据库

最近项目上有个需求,要把采集的数据存储到数据库中,当前西门子有很多方法,必读IDB,还有通过WINCC的脚本,第三方的软件等等,但是随着发展,有些需求希望设备直接到数据库,比如云端的RD…

恼人的“龙天“(䶮)--谈谈从GBK转到GB18030的特殊情况

背景 最近在做一个去O迁移适配,刚好也有友商在一起做,两边测试方式不一样。友商先遇到了一个问题,就是在ORACLE中某个的2字节GBK字符到迁移到友商的库中变成了4字节,刚好那个字段在这个字是2字节的时候,已经存满了&am…

国产六核CPU商显板,三屏异显,米尔基于全志D9360开发板

芯驰D9-Pro 自主可控、安全可信的高性能商显方案 采用国产CPU:集成了6个ARM Cortex-A551.6GHz 高性能CPU和1个ARM Cortex-R5800MHz; 高性能的高安全HSM安全的处理器,支持TRNG、AES、RSA、SHA、SM2/3/4/9; 它包含100GFLOPS 3D G…

屏幕截图编辑工具Snagit中文

Snagit是一款优秀的屏幕、文本和视频捕获与转换程序。它能够捕获屏幕、窗口、客户区窗口、最后一个激活的窗口或用鼠标定义的区域,并支持BMP、PCX、TIF、GIF或JPEG格式的保存。Snagit还具有自动缩放、颜色减少、单色转换、抖动等功能,并能将捕获的图像转…

[windows]一种判断exe是32位还是64位程序简单方法

不用运行,直接查看 exe 文件的兼容性属性。 如果是 32 位的程序,“简化的颜色模式”和“用 640x480 屏幕分辨率运行”是可以勾选的,且兼容模式最低可以调到 Windows 95。 而 64 位的程序,“简化的颜色模式”和“用 640 x 480 屏…

热过载继电器 WJJL1-05/2X AC220V 0.5A-5A 导轨安装 JOSEF约瑟

系列型号 WJJL1-10D/1过载保护器;WJJL1-50D/1过载保护器; WJJL1-100D/1过载保护器;WJJL1-300D/1过载保护器; WJJL1-600D/1过载保护器;WJJL1-1000D/1过载保护器; WJJL1-2000D/1过载保护器;WJ…

❤ Vue3 完整项目太白搭建 Vue3+Pinia+Vant3/ElementPlus+typerscript(一)yarn 版本控制 ltb (太白)

❤ 项目搭建 一、项目信息 Vue3 完整项目搭建 Vue3PiniaVant3/ElementPlustyperscript&#xff08;一&#xff09;yarn 版本控制 项目地址&#xff1a; 二、项目搭建 &#xff08;1&#xff09;创建项目 yarn create vite <ProjectName> --template vueyarn install …

FPGA开发设计

一、概述 FPGA是可编程逻辑器件的一种&#xff0c;本质上是一种高密度可编程逻辑器件。 FPGA的灵活性高、开发周期短、并行性高、具备可重构特性&#xff0c;是一种广泛应用的半定制电路。 FPGA的原理 采用基于SRAM工艺的查位表结构&#xff08;LUT&#xff09;&#xff0c;…

大创项目推荐 深度学习猫狗分类 - python opencv cnn

文章目录 0 前言1 课题背景2 使用CNN进行猫狗分类3 数据集处理4 神经网络的编写5 Tensorflow计算图的构建6 模型的训练和测试7 预测效果8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习猫狗分类 ** 该项目较为新颖&a…

C#~Winform取消窗体最大化最小化按钮

目录 取消最大化-false取消最小化-false效果 取消最大化-false 取消最小化-false 效果

彻底解决charles抓包https乱码的问题

最近做js逆向&#xff0c;听说charles比浏览器抓包更好用&#xff0c;结果发现全是乱码&#xff0c;根本没法用。 然后查询网上水文&#xff1a;全部都是装证书&#xff0c;根本没用&#xff01; 最后终于找到解决办法&#xff0c;在这里记录一下&#xff1a; 乱码的根本原因…

Cmake 中的list介绍

这个链接非常好&#xff0c;都有例子。 https://www.jianshu.com/p/89fb01752d6f

AnyText多语言文字生成与编辑模型——让AI绘图自由添加精美文字

随着AIGC的爆火,图片生成技术得到飞速发展,当前AI生成的图片已达到真假难辨的高保真度。例如stable diffusion与midjourney为代表的文生图大模型。不过,当合成图片中出现文字内容时,现存的AI技术依然无法驾驭文字内容。因此,modescope提出了一种新型的文字生成方法,此方法…

矩阵的秩-

一、定义、理解 非零子式的最高阶数。 如何理解&#xff1f;什么叫做非零子式的最高阶数&#xff1f;&#xff1f;&#xff1f; 举个例子&#xff1a;有一个5阶矩阵 首先什么叫子式&#xff1f; 例如2阶子式就是&#xff0c;任取某两行某两列组成的行列式&#xff0c;就叫…

书生·浦语大模型实战营第三次课堂笔记

LLM 的局限性 知识时效性受限: 如何让LLM能够获取最新的知识 专业能力有限: 如何打造垂域大模型 定制化成本高: 如何打造个人专属的LLM应用 RAG:检索增强生成&#xff0c; 核心思想&#xff1a;给大模型外挂一个知识库&#xff0c;对于用户的提问&#xff0c;会首先从知识库中…

零基础入门,轻松制作仿真翻页电子书

​随着科技的进步&#xff0c;电子书已经成为越来越多人的选择。与传统纸质书籍相比&#xff0c;电子书具有便携性、可搜索性、可分享性等优势。然而&#xff0c;制作电子书并非易事。许多人都因为缺乏相关知识和技能而望而却步。我给大家提供了一些实用的方法哦&#xff0c;可…

字体包大小缩小的软件

Fontmin - 字体子集化方案https://ecomfe.github.io/fontmin/#app

openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态

文章目录 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态195.1 分析查询语句运行状态195.1.1 问题现象195.1.2 处理办法 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态 195.1 分析查询语句运行状态…

什么软件可以做报表?

数据报表&#xff0c;是商业领域中不可或缺的一部分&#xff0c;它通过表格、图表等形式&#xff0c;将复杂的数据进行整理、分析并呈现出来&#xff0c;帮助用户更好地理解数据的趋势和关系。数据报表不仅展示了业务现状和趋势&#xff0c;还支持多种数据分析和挖掘功能&#…