【算法系列 | 12】深入解析查找算法之—斐波那契查找

序言

心若有阳光,你便会看见这个世界有那么多美好值得期待和向往。

决定开一个算法专栏,希望能帮助大家很好的了解算法。主要深入解析每个算法,从概念到示例。

我们一起努力,成为更好的自己!

今天第12讲,讲一下查找算法的—斐波那契查找

一、算法介绍

斐波那契查找算法是一种基于黄金分割的有序查找算法,通过斐波那契数列的特性,在有序序列中快速定位目标元素的位置。

1.1 原理介绍

它结合了二分查找和黄金分割的思想。这个算法的基本原理如下:

  1. 序列构建: 首先,需要一个有序的数组或序列。这个数组的长度通常是斐波那契数列中的一个值,这有助于在查找过程中对数组进行分割。

  2. 斐波那契数列: 斐波那契数列是一组按以下递归关系定义的数字序列:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2)(n > 1)。通常,斐波那契数列的前几项是:0, 1, 1, 2, 3, 5, 8, 13, 21, ...

  3. 查找过程: 对于一个有序序列,首先选择一个斐波那契数列中的值,使得这个值大于或等于待查找序列的长度,然后使用这个斐波那契数列的值将序列分成两个部分。这两个部分的长度之比就是相邻两个斐波那契数的比例。

  4. 比较: 比较要查找的元素与序列中分割点的元素。如果相等,则找到了目标元素;如果待查找元素小于分割点元素,继续在前半部分进行查找;如果待查找元素大于分割点元素,继续在后半部分进行查找。

  5. 迭代: 重复上述步骤,不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

示例说明

假设有一个有序数组 arr,长度为 n,而 n 正好是斐波那契数列中的某个值。为了简化,我们可以选择 n 为斐波那契数列中的某个值,比如 F(5) = 5,所以 n = 5。那么,我们有一个有序数组 arr,长度为 5。

arr = [1, 3, 5, 7, 9]

接下来,我们要查找值为 5 的元素在数组中的位置。以下是斐波那契查找的步骤:

1. 选择斐波那契数列的值: 在斐波那契数列中找到一个最小的值,使得 F(k) >= n,其中 k 是最小可能满足的索引。在这个例子中,我们选择 F(5) = 5。

 2. 分割数组: 将数组分成两个部分,长度比例为斐波那契数列中的两个相邻值的比例。在这个例子中,我们有两部分,长度比例是 3:2。

     arr_left = [1, 3, 5] arr_right = [7, 9]

3.  比较与查找: 比较要查找的元素(5)与分割点元素(arr[2] = 5)。如果相等,找到了目标元素。如果待查找元素小于分割点元素,继续在前半部分进行查找。如果待查找元素大于分割点元素,继续在后半部分进行查找。

 在这个例子中,5 等于分割点元素,所以我们找到了目标元素的位置。

4. 迭代: 重复上述步骤,直到找到目标元素或确定元素不在序列中。

1.2 优缺点

优点:

  1. 适用性广泛: 斐波那契查找适用于有序序列,尤其在序列长度接近斐波那契数列的某个值时效果更佳。相较于二分查找,斐波那契查找能够在某些特定情况下减少查找次数。

  2. 更好的平衡: 由于斐波那契查找使用黄金分割比例进行分割,使得分割后的两个子序列的长度比例更加接近,有助于保持查找的平衡性。

  3. 相对均匀的分割: 斐波那契查找相对于其他分割方法,如二分查找,能够产生更为均匀的分割,有助于在查找过程中更快地接近目标元素。

缺点:

  1. 数组长度限制: 斐波那契查找要求待查找的序列长度必须是斐波那契数列中的某个值,这在实际应用中可能不太灵活,特别是当数据规模不是恰好是斐波那契数列中的某个值时,可能需要对数据进行补齐。

  2. 比较次数不稳定: 斐波那契查找在某些情况下可能会比二分查找效果更好,但并不是在所有情况下都表现更好。具体的性能取决于待查找数据的分布情况和序列的长度。在一些场景下,二分查找可能更为稳定。

  3. 计算斐波那契数列: 为了选择合适的斐波那契数列的值,需要事先计算斐波那契数列,这可能涉及到一些计算成本,特别是对于较大的数据集。

总体来说,斐波那契查找算法在某些特定条件下表现优秀,但在实际应用中需要谨慎选择,并根据具体情况考虑使用。在一些情况下,简单的二分查找可能更加实用和高效。

1.3 复杂度

时间复杂度:

  1. 查找过程: 斐波那契查找的主要操作是不断地缩小查找范围,通过比较待查找元素与分割点元素来确定继续在前半部分还是后半部分进行查找。在每一步操作中,都可以将待查找范围缩小为原来的黄金分割比例,即约为 0.618

  2. 时间复杂度: 斐波那契查找的时间复杂度可以表示为 O(log n),其中 n 是待查找序列的长度。与二分查找相比,它的复杂度相对更低。

空间复杂度:

  1. 常数空间: 斐波那契查找算法的空间复杂度非常低。它只需要常数级别的额外空间来存储一些中间变量,如斐波那契数列的值、分割点等。

  2. O(1): 因此,斐波那契查找的空间复杂度可以表示为 O(1)。

总体来说,斐波那契查找在时间复杂度和空间复杂度上都相对较低,这使得它在某些特定场景下成为一个有效的查找算法。

但需要注意,实际效果还受到数据分布等因素的影响,因此在选择查找算法时,需要综合考虑具体情况。

1.4 使用场景

斐波那契查找算法在一些特定的场景下表现良好,适用于如下情况:

  1. 有序序列: 斐波那契查找要求待查找的序列是有序的,因为它是基于比较来缩小查找范围的。如果序列无序,需要先进行排序操作。

  2. 长度接近斐波那契数: 算法对序列的长度有一定的要求,最好是恰好是斐波那契数列中的某个值。在实际应用中,可以选择最接近并大于待查找序列长度的斐波那契数。

  3. 分布均匀: 如果数据在序列中的分布相对均匀,斐波那契查找可以更好地发挥其优势。这是因为它能够在分割序列时保持更好的平衡。

  4. 查找频繁但数据变动不频繁: 如果对同一序列进行多次查找而且序列基本保持不变,斐波那契查找的一些前期计算可以提前完成,然后多次使用相同的计算结果进行查找,从而提高效率。

  5. 适用于内存有限的情况: 斐波那契查找只需要常数级别的额外空间,因此在内存有限的情况下比一些其他算法更为适用。

需要注意的是,斐波那契查找并不总是比其他查找算法更好,它在特定的条件下才会表现出色。在实际应用中,需要根据具体情况选择最适合的查找算法。

二、代码实现

2.1 Java代码实现

2.1.1 代码示例

public class FibonacciSearch {// 辅助函数:生成斐波那契数列private static int[] generateFibonacci(int n) {int[] fibonacci = new int[n];fibonacci[0] = 0;fibonacci[1] = 1;for (int i = 2; i < n; i++) {fibonacci[i] = fibonacci[i - 1] + fibonacci[i - 2];}return fibonacci;}// 斐波那契查找算法public static int fibonacciSearch(int[] arr, int key) {int n = arr.length;// 生成斐波那契数列,找到最接近且大于等于 n 的值int[] fibonacci = generateFibonacci(n);int k = 0;while (fibonacci[k] < n) {k++;}// 将数组扩展到斐波那契数列的长度int[] temp = new int[fibonacci[k]];System.arraycopy(arr, 0, temp, 0, n);int low = 0;int high = n - 1;// 主要查找过程while (low <= high) {int mid = low + fibonacci[k - 1] - 1;if (key < temp[mid]) {high = mid - 1;k -= 1;} else if (key > temp[mid]) {low = mid + 1;k -= 2;} else {// 找到了目标元素,需要判断返回的是原数组中的索引还是扩展数组中的索引return Math.min(mid, high);}}// 未找到目标元素return -1;}public static void main(String[] args) {int[] arr = {1, 3, 5, 7, 9, 11, 13, 15};int key = 7;int result = fibonacciSearch(arr, key);if (result != -1) {System.out.println("元素 " + key + " 在数组中的索引为:" + result);} else {System.out.println("元素 " + key + " 不在数组中");}}
}

2.1.2 代码详解

  1. generateFibonacci方法:生成斐波那契数列,参数 n 表示生成数列的长度。

  2. fibonacciSearch方法:实现了斐波那契查找算法。首先,通过调用 generateFibonacci 方法生成斐波那契数列,然后找到最接近并大于等于数组长度的斐波那契数。接着,将原数组扩展到斐波那契数列的长度,再进行主要的查找过程。查找过程中,根据比较的结果不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

  3. main方法:在这里,创建一个有序数组 arr,并调用 fibonacciSearch 方法查找元素 7 的索引。最后,输出查找结果。

2.1.3 运行结果

元素 7 在数组中的索引为:3

2.2 Python代码实现

2.2.1 代码示例

def generate_fibonacci(n):"""生成斐波那契数列"""fibonacci = [0, 1]while fibonacci[-1] < n:fibonacci.append(fibonacci[-1] + fibonacci[-2])return fibonaccidef fibonacci_search(arr, key):"""斐波那契查找算法"""n = len(arr)# 生成斐波那契数列,找到最接近且大于等于 n 的值fibonacci = generate_fibonacci(n)k = 0while fibonacci[k] < n:k += 1# 将数组扩展到斐波那契数列的长度temp = arr + [arr[-1]] * (fibonacci[k] - n)low, high = 0, n - 1# 主要查找过程while low <= high:mid = low + fibonacci[k - 1] - 1if key < temp[mid]:high = mid - 1k -= 1elif key > temp[mid]:low = mid + 1k -= 2else:# 找到了目标元素,返回原数组中的索引return min(mid, n - 1)# 未找到目标元素return -1if __name__ == '__main__':# 测试arr = [1, 3, 5, 7, 9, 11, 13, 15]key = 7result = fibonacci_search(arr, key)if result != -1:print(f"元素 {key} 在数组中的索引为:{result}")else:print(f"元素 {key} 不在数组中")

2.2.2 代码详解

  1. generate_fibonacci 函数:用于生成斐波那契数列,直到数列的最后一个值大于等于给定的参数 n

  2. fibonacci_search 函数:实现了斐波那契查找算法。首先,调用 generate_fibonacci 函数生成斐波那契数列,然后找到最接近并大于等于数组长度的斐波那契数。接着,将原数组扩展到斐波那契数列的长度,再进行主要的查找过程。查找过程中,根据比较的结果不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

在测试部分,创建一个有序数组 arr,并调用 fibonacci_search 函数查找元素 7 的索引。最后,输出查找结果。

2.2.3 运行结果

元素 7 在数组中的索引为:3

好啦,今天就到这里啦,下期见喽~~🙉

三、图书推荐

3.1 图书名称

图书名称:《Pandas数据分析》

Pandas是强大且流行的库,是Python中数据科学的代名词。这本书会介绍如何使用Pandas对真实世界的数据集进行数据分析,如股市数据、模拟黑客攻击的数据、天气趋势、地震数据、葡萄酒数据和天文数据等

Pandas使我们能够有效地处理表格数据,从而使数据整理和可视化变得更容易。等不及的小伙伴,可以点击这个链接先睹为快 《Pandas数据分析》

3.2 图书介绍 

3.3 参与方式

图书数量:本次送出 2 本   !!!⭐️⭐️⭐️
活动时间:截止到 2024-01-09 12:00:00

抽奖方式:

  • 评论区随机抽取小伙伴!

留言内容,以下方式都可以:

  • 根据文章内容进行高质量评论

参与方式:关注博主、点赞、收藏,评论区留言 

3.4 中奖名单

🍓🍓 获奖名单🍓🍓

 中奖名单:请关注博主动态

名单公布时间:2024-01-09 下午

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/614141.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用MATLAB求最短路径(graphshortestpath)和求最小生成树(minspantree),代码演示

求最短路径&#xff08;graphshortestpath&#xff09;&#xff0c;求最小生成树&#xff08;minspantree&#xff09; 文章目录 求最短路径&#xff08;graphshortestpath&#xff09;&#xff0c;求最小生成树&#xff08;minspantree&#xff09;1、最短路径问题2、最小生成…

如何快速取消开始右下角的更新并关机

关机时&#xff0c;隔几天老是会跳出来有更新并关机&#xff0c;想要直接关机又没有办法。怎么办&#xff1f;往下看 找到设置&#xff0c;进去 找到更新和安全 找到Windows更新 找到高级选项&#xff0c;把这些都关闭&#xff0c;然后在下面可以许安则暂停截止日期&#…

芯片设计中的ECO

如标题所写&#xff0c;我们今天聊一聊IC设计种的ECO。在展开关于ECO的概念之前&#xff0c;我们先大致捋下数字IC设计的流程&#xff0c;有助于我们后面的讨论。 数字IC设计流程简述 1、确定项目需求 根据市场或者芯片功能要求&#xff0c;设计芯片的spec&#xff0c;得到可…

模型评估:A/B测试的陷阱

互联网公司中&#xff0c;A/B测试是验证新模块、新功能、新产品是否有效&#xff1b;新算法、新模型的效果是否有提升&#xff1b;新设计是否受到用户欢迎&#xff1b;新更改是否影响用户体验的主要测试方法。在机器学习领域中&#xff0c;A/B测试是验证模型最终效果的主要手段…

StarRocks Awards 2023 年度贡献人物

2023 年行将结束。这一年&#xff0c;StarRocks 继续全方位大步向前迈进&#xff0c;在 300 贡献者的辛勤建设下&#xff0c;社区先后发布了 50 版本&#xff0c;并完成了从全场景 OLAP 到云原生湖仓的进化。 贡献者们的每一行代码、每一场布道&#xff0c;推动着 StarRocks 社…

【AIGC-文本/图片生成视频系列-8】Align your Latents: 基于潜在扩散模型的高分辨率视频合成

目录 一. 项目概述与贡献 二. 方法详解 三. 应用总览 四. 个性化视频生成 五. 实时卷积合成 六. 更多结果 七. 论文 八. 个人思考 AI生成高分辨率视频一直是一个挑战。 今天讲解一篇潜在扩散模型&#xff08;LDM&#xff09;用于高分辨率、时间一致且多样化的视频生成…

【清华社机器之心】视频生成前沿研究与应用特别活动

在视频生成即将迎来技术和应用大爆发之际&#xff0c;为了帮助企业和广大从业者掌握技术前沿&#xff0c;把握时代机遇&#xff0c;机器之心AI论坛就将国内的视频生成技术力量齐聚一堂&#xff0c;共同分享国内顶尖力量的技术突破和应用实践。 论坛将于2024.01.20在北京举办&am…

RT-Thread 线程间通信

线程间通信 在裸机编程中&#xff0c;经常会使用全局变量进行功能间的通信&#xff0c;如某些功能可能由于一些操作而改变全局变量的值&#xff0c;另一个功能对此全局变量进行读取&#xff0c;根据读取到的全局变量值执行相应的动作&#xff0c;达到通信协作的目的。 邮箱 …

Unity中向量的点乘、叉乘区别和作用以及经典案例

文章目录 点乘&#xff08;Dot Product&#xff09;叉乘&#xff08;Cross Product&#xff09;向量归一化&#xff08;Normalize&#xff09;其他作用 unity开发中我们要计算角度&#xff0c;判断位置&#xff0c;常用点乘、叉乘、归一化等等&#xff0c;我们看看他们的使用案…

Flashduty 案例分享 - 途游游戏

Flashduty 作为功能完备的事件OnCall中心&#xff0c;可以接入云上、云下不同监控系统&#xff0c;统一做告警降噪分派、认领升级、排班协同&#xff0c;已经得到众多先进企业的认可。我们采访了一些典型客户代表&#xff0c;了解他们的痛点、选型考虑和未来展望&#xff0c;集…

JavaScript复习小案例

JavaScript实现简易留言板 效果图 完整代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>留言板</title><style>body {background-color: #f4f4f4;}/* 外部容器样式设置 */.wrapper {width: 400px;heigh…

建造者模式深入理解:演示建造单个和多个产品的实践,结合模板模式;支持并行构建,通俗易懂

首先呢看下建造者的定义是什么样的&#xff0c;先读一遍 建造者模式 建造者模式&#xff08;Builder Pattern&#xff09;是一种创建型设计模式&#xff0c;它主要用于将一个复杂对象的构建过程与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表现形式。这种模式…

微软Office 2019 批量授权版

软件介绍 微软办公软件套件Microsoft Office 2019 专业增强版2024年1月批量许可版更新推送&#xff01;Office2019正式版2018年10月份推出&#xff0c;主要为多人跨平台办公与团队协作打造。Office2019整合对过去三年在Office365里所有功能&#xff0c;包括对Word、Excel、Pow…

【PyQt小知识 - 7】:QLineEdit设置输入的文本以圆点或星号等方式显示

文章目录 setEchoMode setEchoMode 在PyQt中&#xff0c;QLineEdit是一种用于接收用户输入的小部件&#xff08;widget&#xff09;。setEchoMode是QLineEdit类中的一个方法&#xff0c;可以用于设置文本输入框中的文本显示模式。它接受一个参数来指定要使用的模式。 setEcho…

GEE查看MODIS的NDVI、EVI产品并生成逐日/逐月NDVI曲线

目录 MOD13Q1MOD09GA计算逐日/逐月NDVI生成曲线参考博文 MOD13Q1 MOD13Q1有两个产品&#xff1a;NDVI和EVI&#xff0c;每16天为全球提供&#xff0c;分辨率为250M 通过查看时间&#xff0c;该NDVI产品是16天一景 MOD09GA 提供逐日的表面反射率产品&#xff0c;分辨率为500m…

09Bean的生命周期/作用域不同管理方式不同/自己new的对象纳入Spring容器管理

Spring其实就是一个管理Bean对象的工厂。它负责对象的创建&#xff0c;对象的销毁等。 所谓的生命周期就是&#xff1a;对象从创建开始到最终销毁的整个过程。 Bean的生命周期之5步 ● 第一步&#xff1a;实例化Bean(无参构造方法执行) ● 第二步&#xff1a;Bean属性赋值(注…

一文搞懂MongoDB

简介 什么是MongoDB MongoDB是一个基于分布式文件存储的NoSQL数据库&#xff0c;基于C语言开发而成的。它以文档存储格式&#xff08;BSON&#xff09;为基础&#xff0c;是由字段和值对组成的数据结构。 扩展&#xff1a; BSON&#xff08;Binary JSON&#xff09;是一种二进…

力扣日记1.11-【二叉树篇】450. 删除二叉搜索树中的节点

力扣日记&#xff1a;【二叉树篇】450. 删除二叉搜索树中的节点 日期&#xff1a;2024.1.11 参考&#xff1a;代码随想录、力扣 450. 删除二叉搜索树中的节点 题目描述 难度&#xff1a;中等 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key…

区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测

区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测 目录 区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.CNN-BiLSTM-KDE多…

【python】python新年烟花代码【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 新年的钟声即将敲响&#xff0c;为了庆祝这个喜庆的时刻&#xff0c;我们可以用 Python 编写一个炫彩夺目的烟花盛典。本文将详细介绍如何使用 Pygame 库创建一个令人惊叹的烟花效果。 一、效果图&#xff1a; 二…