预训练中文GPT2(包括重新训练tokenizer)

训练数据

1.json后缀的文件

2.数据是json line格式,一行一条json

3. json结构如下

{"content": "①北京和上海户籍的游客可获得韩国多次签证;②“整容客”可以不经由韩国使领馆、直接在网上申请签证;③中泰免签的实施日期尚未敲定;④越南已向中国持通行证旅游的公民全面开放。"
}

tokenizer训练(BPE)

from transformers import AutoTokenizer
from datasets import load_datasetpath = r'/tmp/pycharm_project_806/LCSTS_new/train.json'  # a chinese text dataset
raw_data = load_dataset("json", data_files=path, split='train')training_corpus = (raw_data[i : i + 1000]["content"]for i in range(0, len(raw_data), 1000)
)old_tokenizer = AutoTokenizer.from_pretrained("/home/chenjq/model/gpt2")
tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)example = '就是去美国大使馆的官方网站,它有中文版,去把每一条仔细研究透了,把每一个表格和材料都准备好了'  # chinese text
old_tokens = old_tokenizer.tokenize(example)
print('old_tokens:',old_tokens)new_tokens = tokenizer.tokenize(example)
print('new_tokens',new_tokens)
tokenizer.save_pretrained("./my-tok")

tokenizer训练(sentencePiece)

from tokenizers import (decoders,models,normalizers,pre_tokenizers,processors,trainers,Tokenizer,
)
from datasets import load_dataset
from tokenizers import Regexpath = r'all_train.json'  # a chinese text dataset
# path = r'/tmp/pycharm_project_806/cluener.json'  # a chinese text dataset
raw_data = load_dataset("json", data_files=path, split='train')training_corpus = (raw_data[i : i + 1000]["content"]for i in range(0, len(raw_data), 1000)
)tokenizer = Tokenizer(models.Unigram())# NLG不应当加入 normalizers.Lowercase(),因为在decode的时候,就无法生成大写的了
# 在bert等NLU模型中,可以加入 normalizers.Lowercase(),因为NLU一般不用于文本生成,而是用于文本理解(如文本分类,实体抽取),
# 这种情况下其实大写小写无所谓
tokenizer.normalizer = normalizers.Sequence([normalizers.Replace("``", '"'),normalizers.Replace("''", '"'),normalizers.NFKD(),normalizers.StripAccents(),normalizers.Replace(Regex(" {2,}"), " "),]
)tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()print(tokenizer.pre_tokenizer.pre_tokenize_str("北京是中国的首都,今天天气真好。"))
print(1)special_tokens = ["<|endoftext|>"]
trainer = trainers.UnigramTrainer(vocab_size=52000, special_tokens=special_tokens, unk_token="<unk>",max_piece_length=4,
)
tokenizer.train_from_iterator(training_corpus, trainer=trainer)tokenizer.decoder = decoders.Metaspace()from transformers import PreTrainedTokenizerFastwrapped_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer,bos_token="<|endoftext|>",eos_token="<|endoftext|>",
)
wrapped_tokenizer.save_pretrained('./sp-tok')print(wrapped_tokenizer.tokenize("北京是中国的首都,今天天气真好。"))

模型训练

#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.import logging
import math
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optionalimport datasets
import evaluate
import torch
from datasets import load_datasetimport transformers
from transformers import (CONFIG_MAPPING,MODEL_FOR_CAUSAL_LM_MAPPING,AutoConfig,AutoModelForCausalLM,AutoTokenizer,HfArgumentParser,Trainer,TrainingArguments,default_data_collator,is_torch_tpu_available,set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.37.0.dev0")require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")logger = logging.getLogger(__name__)MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)@dataclass
class ModelArguments:"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch."""model_name_or_path: Optional[str] = field(default=None,metadata={"help": ("The model checkpoint for weights initialization. Don't set if you want to train a model from scratch.")},)model_type: Optional[str] = field(default=None,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},)config_overrides: Optional[str] = field(default=None,metadata={"help": ("Override some existing default config settings when a model is trained from scratch. Example: ""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index")},)config_name: Optional[str] = field(default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"})tokenizer_name: Optional[str] = field(default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})cache_dir: Optional[str] = field(default=None,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},)use_fast_tokenizer: bool = field(default=True,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},)model_revision: str = field(default="main",metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},)token: str = field(default=None,metadata={"help": ("The token to use as HTTP bearer authorization for remote files. If not specified, will use the token ""generated when running `huggingface-cli login` (stored in `~/.huggingface`).")},)use_auth_token: bool = field(default=None,metadata={"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."},)trust_remote_code: bool = field(default=False,metadata={"help": ("Whether or not to allow for custom models defined on the Hub in their own modeling files. This option""should only be set to `True` for repositories you trust and in which you have read the code, as it will ""execute code present on the Hub on your local machine.")},)torch_dtype: Optional[str] = field(default=None,metadata={"help": ("Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the ""dtype will be automatically derived from the model's weights."),"choices": ["auto", "bfloat16", "float16", "float32"],},)low_cpu_mem_usage: bool = field(default=False,metadata={"help": ("It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. ""set True will benefit LLM loading time and RAM consumption.")},)def __post_init__(self):if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):raise ValueError("--config_overrides can't be used in combination with --config_name or --model_name_or_path")@dataclass
class DataTrainingArguments:"""Arguments pertaining to what data we are going to input our model for training and eval."""dataset_name: Optional[str] = field(default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."})dataset_config_name: Optional[str] = field(default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."})train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})validation_file: Optional[str] = field(default=None,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},)max_train_samples: Optional[int] = field(default=None,metadata={"help": ("For debugging purposes or quicker training, truncate the number of training examples to this ""value if set.")},)max_eval_samples: Optional[int] = field(default=None,metadata={"help": ("For debugging purposes or quicker training, truncate the number of evaluation examples to this ""value if set.")},)streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})block_size: Optional[int] = field(default=None,metadata={"help": ("Optional input sequence length after tokenization. ""The training dataset will be truncated in block of this size for training. ""Default to the model max input length for single sentence inputs (take into account special tokens).")},)overwrite_cache: bool = field(default=False, metadata={"help": "Overwrite the cached training and evaluation sets"})validation_split_percentage: Optional[int] = field(default=5,metadata={"help": "The percentage of the train set used as validation set in case there's no validation split"},)preprocessing_num_workers: Optional[int] = field(default=None,metadata={"help": "The number of processes to use for the preprocessing."},)keep_linebreaks: bool = field(default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."})def __post_init__(self):if self.streaming:require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")if self.dataset_name is None and self.train_file is None and self.validation_file is None:raise ValueError("Need either a dataset name or a training/validation file.")else:if self.train_file is not None:extension = self.train_file.split(".")[-1]assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."if self.validation_file is not None:extension = self.validation_file.split(".")[-1]assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."def main():# See all possible arguments in src/transformers/training_args.py# or by passing the --help flag to this script.# We now keep distinct sets of args, for a cleaner separation of concerns.parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):# If we pass only one argument to the script and it's the path to a json file,# let's parse it to get our arguments.model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))else:model_args, data_args, training_args = parser.parse_args_into_dataclasses()if model_args.use_auth_token is not None:warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",FutureWarning,)if model_args.token is not None:raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")model_args.token = model_args.use_auth_token# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The# information sent is the one passed as arguments along with your Python/PyTorch versions.send_example_telemetry("run_clm", model_args, data_args)# Setup logginglogging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",datefmt="%m/%d/%Y %H:%M:%S",handlers=[logging.StreamHandler(sys.stdout)],)if training_args.should_log:# The default of training_args.log_level is passive, so we set log level at info here to have that default.transformers.utils.logging.set_verbosity_info()log_level = training_args.get_process_log_level()logger.setLevel(log_level)datasets.utils.logging.set_verbosity(log_level)transformers.utils.logging.set_verbosity(log_level)transformers.utils.logging.enable_default_handler()transformers.utils.logging.enable_explicit_format()# Log on each process the small summary:logger.warning(f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}")logger.info(f"Training/evaluation parameters {training_args}")# Detecting last checkpoint.last_checkpoint = Noneif os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:last_checkpoint = get_last_checkpoint(training_args.output_dir)if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:raise ValueError(f"Output directory ({training_args.output_dir}) already exists and is not empty. ""Use --overwrite_output_dir to overcome.")elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:logger.info(f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.")# Set seed before initializing model.set_seed(training_args.seed)# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/# (the dataset will be downloaded automatically from the datasets Hub).## For CSV/JSON files, this script will use the column called 'text' or the first column if no column called# 'text' is found. You can easily tweak this behavior (see below).## In distributed training, the load_dataset function guarantee that only one local process can concurrently# download the dataset.if data_args.dataset_name is not None:# Downloading and loading a dataset from the hub.raw_datasets = load_dataset(data_args.dataset_name,data_args.dataset_config_name,cache_dir=model_args.cache_dir,token=model_args.token,streaming=data_args.streaming,)if "validation" not in raw_datasets.keys():raw_datasets["validation"] = load_dataset(data_args.dataset_name,data_args.dataset_config_name,split=f"train[:{data_args.validation_split_percentage}%]",cache_dir=model_args.cache_dir,token=model_args.token,streaming=data_args.streaming,)raw_datasets["train"] = load_dataset(data_args.dataset_name,data_args.dataset_config_name,split=f"train[{data_args.validation_split_percentage}%:]",cache_dir=model_args.cache_dir,token=model_args.token,streaming=data_args.streaming,)else:data_files = {}dataset_args = {}if data_args.train_file is not None:data_files["train"] = data_args.train_fileif data_args.validation_file is not None:data_files["validation"] = data_args.validation_fileextension = (data_args.train_file.split(".")[-1]if data_args.train_file is not Noneelse data_args.validation_file.split(".")[-1])if extension == "txt":extension = "text"dataset_args["keep_linebreaks"] = data_args.keep_linebreaksraw_datasets = load_dataset(extension,data_files=data_files,cache_dir=model_args.cache_dir,token=model_args.token,**dataset_args,)# If no validation data is there, validation_split_percentage will be used to divide the dataset.if "validation" not in raw_datasets.keys():raw_datasets["validation"] = load_dataset(extension,data_files=data_files,split=f"train[:{data_args.validation_split_percentage}%]",cache_dir=model_args.cache_dir,token=model_args.token,**dataset_args,)raw_datasets["train"] = load_dataset(extension,data_files=data_files,split=f"train[{data_args.validation_split_percentage}%:]",cache_dir=model_args.cache_dir,token=model_args.token,**dataset_args,)# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at# https://huggingface.co/docs/datasets/loading_datasets.# Load pretrained model and tokenizer## Distributed training:# The .from_pretrained methods guarantee that only one local process can concurrently# download model & vocab.config_kwargs = {"cache_dir": model_args.cache_dir,"revision": model_args.model_revision,"token": model_args.token,"trust_remote_code": model_args.trust_remote_code,}if model_args.config_name:config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)elif model_args.model_name_or_path:config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)else:config = CONFIG_MAPPING[model_args.model_type]()logger.warning("You are instantiating a new config instance from scratch.")if model_args.config_overrides is not None:logger.info(f"Overriding config: {model_args.config_overrides}")config.update_from_string(model_args.config_overrides)logger.info(f"New config: {config}")tokenizer_kwargs = {"cache_dir": model_args.cache_dir,"use_fast": model_args.use_fast_tokenizer,"revision": model_args.model_revision,"token": model_args.token,"trust_remote_code": model_args.trust_remote_code,}if model_args.tokenizer_name:tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)elif model_args.model_name_or_path:tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)else:raise ValueError("You are instantiating a new tokenizer from scratch. This is not supported by this script. ""You can do it from another script, save it, and load it from here, using --tokenizer_name.")if model_args.model_name_or_path:torch_dtype = (model_args.torch_dtypeif model_args.torch_dtype in ["auto", None]else getattr(torch, model_args.torch_dtype))model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path,from_tf=bool(".ckpt" in model_args.model_name_or_path),config=config,cache_dir=model_args.cache_dir,revision=model_args.model_revision,token=model_args.token,trust_remote_code=model_args.trust_remote_code,torch_dtype=torch_dtype,low_cpu_mem_usage=model_args.low_cpu_mem_usage,)else:model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch# on a small vocab and want a smaller embedding size, remove this test.embedding_size = model.get_input_embeddings().weight.shape[0]if len(tokenizer) > embedding_size:model.resize_token_embeddings(len(tokenizer))# Preprocessing the datasets.# First we tokenize all the texts.if training_args.do_train:column_names = list(raw_datasets["train"].features)else:column_names = list(raw_datasets["validation"].features)# text_column_name = "text" if "text" in column_names else column_names[0]text_column_name = "content"# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_functiontok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")def tokenize_function(examples):with CaptureLogger(tok_logger) as cl:output = tokenizer(examples[text_column_name])# clm input could be much much longer than block_sizeif "Token indices sequence length is longer than the" in cl.out:tok_logger.warning("^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"" before being passed to the model.")return outputwith training_args.main_process_first(desc="dataset map tokenization"):if not data_args.streaming:tokenized_datasets = raw_datasets.map(tokenize_function,batched=True,num_proc=data_args.preprocessing_num_workers,remove_columns=column_names,load_from_cache_file=not data_args.overwrite_cache,desc="Running tokenizer on dataset",)else:tokenized_datasets = raw_datasets.map(tokenize_function,batched=True,remove_columns=column_names,)if hasattr(config, "max_position_embeddings"):max_pos_embeddings = config.max_position_embeddingselse:# Define a default value if the attribute is missing in the config.max_pos_embeddings = 1024if data_args.block_size is None:block_size = tokenizer.model_max_lengthif block_size > max_pos_embeddings:logger.warning(f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx.")if max_pos_embeddings > 0:block_size = min(1024, max_pos_embeddings)else:block_size = 1024else:if data_args.block_size > tokenizer.model_max_length:logger.warning(f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}.")block_size = min(data_args.block_size, tokenizer.model_max_length)# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.def group_texts(examples):# Concatenate all texts.concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}total_length = len(concatenated_examples[list(examples.keys())[0]])# We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.total_length = (total_length // block_size) * block_size# Split by chunks of max_len.result = {k: [t[i : i + block_size] for i in range(0, total_length, block_size)]for k, t in concatenated_examples.items()}result["labels"] = result["input_ids"].copy()return result# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower# to preprocess.## To speed up this part, we use multiprocessing. See the documentation of the map method for more information:# https://huggingface.co/docs/datasets/process#mapwith training_args.main_process_first(desc="grouping texts together"):if not data_args.streaming:lm_datasets = tokenized_datasets.map(group_texts,batched=True,num_proc=data_args.preprocessing_num_workers,load_from_cache_file=not data_args.overwrite_cache,desc=f"Grouping texts in chunks of {block_size}",)else:lm_datasets = tokenized_datasets.map(group_texts,batched=True,)if training_args.do_train:if "train" not in tokenized_datasets:raise ValueError("--do_train requires a train dataset")train_dataset = lm_datasets["train"]if data_args.max_train_samples is not None:max_train_samples = min(len(train_dataset), data_args.max_train_samples)train_dataset = train_dataset.select(range(max_train_samples))if training_args.do_eval:if "validation" not in tokenized_datasets:raise ValueError("--do_eval requires a validation dataset")eval_dataset = lm_datasets["validation"]if data_args.max_eval_samples is not None:max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)eval_dataset = eval_dataset.select(range(max_eval_samples))def preprocess_logits_for_metrics(logits, labels):if isinstance(logits, tuple):# Depending on the model and config, logits may contain extra tensors,# like past_key_values, but logits always come firstlogits = logits[0]return logits.argmax(dim=-1)metric = evaluate.load("accuracy")def compute_metrics(eval_preds):preds, labels = eval_preds# preds have the same shape as the labels, after the argmax(-1) has been calculated# by preprocess_logits_for_metrics but we need to shift the labelslabels = labels[:, 1:].reshape(-1)preds = preds[:, :-1].reshape(-1)return metric.compute(predictions=preds, references=labels)# Initialize our Trainertrainer = Trainer(model=model,args=training_args,train_dataset=train_dataset if training_args.do_train else None,eval_dataset=eval_dataset if training_args.do_eval else None,tokenizer=tokenizer,# Data collator will default to DataCollatorWithPadding, so we change it.data_collator=default_data_collator,compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,preprocess_logits_for_metrics=preprocess_logits_for_metricsif training_args.do_eval and not is_torch_tpu_available()else None,)# Trainingif training_args.do_train:checkpoint = Noneif training_args.resume_from_checkpoint is not None:checkpoint = training_args.resume_from_checkpointelif last_checkpoint is not None:checkpoint = last_checkpointtrain_result = trainer.train(resume_from_checkpoint=checkpoint)trainer.save_model()  # Saves the tokenizer too for easy uploadmetrics = train_result.metricsmax_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset))metrics["train_samples"] = min(max_train_samples, len(train_dataset))trainer.log_metrics("train", metrics)trainer.save_metrics("train", metrics)trainer.save_state()# Evaluationif training_args.do_eval:logger.info("*** Evaluate ***")metrics = trainer.evaluate()max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))try:perplexity = math.exp(metrics["eval_loss"])except OverflowError:perplexity = float("inf")metrics["perplexity"] = perplexitytrainer.log_metrics("eval", metrics)trainer.save_metrics("eval", metrics)kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}if data_args.dataset_name is not None:kwargs["dataset_tags"] = data_args.dataset_nameif data_args.dataset_config_name is not None:kwargs["dataset_args"] = data_args.dataset_config_namekwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"else:kwargs["dataset"] = data_args.dataset_nameif training_args.push_to_hub:trainer.push_to_hub(**kwargs)else:trainer.create_model_card(**kwargs)def _mp_fn(index):# For xla_spawn (TPUs)main()if __name__ == "__main__":main()"""
python run_clm.py \--train_file /tmp/pycharm_project_806/LCSTS_new/train.json \--tokenizer_name /home/chenjq/pythonWork/nlp/train_new_gpt2/my-tok \--model_type gpt2 \--num_train_epochs 2 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 8 \--do_train \--output_dir ./tmp/test-clm/tmp/pycharm_project_806/LCSTS_new/train.json
/tmp/pycharm_project_806/cluener.json--gradient_accumulation_steps 8 \--max_train_samples 1000
"""

训练代码参考:

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/README.md

 结果对比

推理代码

from transformers import GPT2Tokenizer,GPT2LMHeadModel, set_seed
set_seed(42)# model_path = '/tmp/pycharm_project_806/tmp/test-clm/checkpoint-5500'
model_path = "/home/chenjq/model/gpt2"tokenizer = GPT2Tokenizer.from_pretrained(model_path)# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained(model_path,pad_token_id=tokenizer.eos_token_id)# encode context the generation is conditioned on
input_ids = tokenizer.encode('美国', return_tensors='pt')# generate text until the output length (which includes the context length) reaches 50
greedy_output = model.generate(input_ids, max_length=50)print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))# activate beam search and early_stopping
beam_output = model.generate(input_ids,max_length=50,num_beams=5,early_stopping=True
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))# set no_repeat_ngram_size to 2
beam_output = model.generate(input_ids,max_length=50,num_beams=5,no_repeat_ngram_size=2,early_stopping=True
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))# set return_num_sequences > 1
beam_outputs = model.generate(input_ids,max_length=50,num_beams=5,no_repeat_ngram_size=2,num_return_sequences=5,early_stopping=True
)# now we have 3 output sequences
print("Output:\n" + 100 * '-')
for i, beam_output in enumerate(beam_outputs):print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(input_ids,do_sample=True,max_length=50,top_k=0
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))# use temperature to decrease the sensitivity to low probability candidates
sample_output = model.generate(input_ids,do_sample=True,max_length=50,top_k=0,temperature=0.7
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))# set top_k to 50
sample_output = model.generate(input_ids,do_sample=True,max_length=50,top_k=50
)print("top_k Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))# deactivate top_k sampling and sample only from 92% most likely words
sample_output = model.generate(input_ids,do_sample=True,max_length=50,top_p=0.92,top_k=0
)print("top_p Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

原始GPT2

自己训练的GPT2 (BPE tokenizer)

自己训练的GPT2  (sentencePiece tokenizer)

结论

1.训练数据采用了LCSTS数据集,LCSTS_new是中文短摘要最常用的LCSTS短摘要数据集的升级版本,在数据量、质量方面均有显著提升,在信息摘要与提炼的过程中,与原文的事实一致性需要得到重点关注。

{"id": 6,"summary": "中国游客大增多国放宽签证","content": "①北京和上海户籍的游客可获得韩国多次签证;②“整容客”可以不经由韩国使领馆、直接在网上申请签证;③中泰免签的实施日期尚未敲定;④越南已向中国持通行证旅游的公民全面开放。"
}

2.从生成结果上看,自己训练的比原始的更好。

3.训练数据大约500M,都是短文本,新闻数据,缺乏多样性。可以尝试增加数据多样性,增加文本长度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613703.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 深度优先搜索DFS || 模版题:排列数字

给定一个整数 n &#xff0c;将数字 1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 n 。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据范围 1…

前端页面优化做的工作

1.分析模块占用空间 new (require(webpack-bundle-analyzer).BundleAnalyzerPlugin)() 2.使用谷歌浏览器中的layers&#xff0c;看下有没有影响性能的模块&#xff0c;或者应该销毁没销毁的 3.由于我们页面中含有很大的序列帧动画&#xff0c;所以会导致页面性能低&#xff0…

质量好洗地机有哪些?洗地机口碑榜

在很多人眼中&#xff0c;洗地机可能被简单地视为一种高价的拖把&#xff0c;但作为一个经验丰富的洗地机测评博主&#xff0c;我要强调洗地机在家务工作中的巨大价值。它不仅仅是一种清洁工具&#xff0c;更是集扫地、拖地、洗地以及擦干地板等多项功能于一身的强大设备。通过…

Transformer从菜鸟到新手(六)

引言 上篇文章介绍了如何在多GPU上分布式训练&#xff0c;本文介绍大模型常用的一种推理加速技术——KV缓存。 KV Cache KV缓存(KV Cache)是在大模型推理中常用的一种技巧。我们知道在推理阶段&#xff0c;Transformer也只能像RNN一样逐个进行预测&#xff0c;也称为自回归。…

关于报错 curl: (56) Recv failure: Connection reset by peer

curl ip没问题 curl localhost 则报错 curl: (56) Recv failure: Connection reset by peer 出现这个报错有很多原因, 其中之一就是terminal代理 而关闭代理应用之后, 其实由于配置的终端都是 export指定的代理 所以导致还是一直报错. 通过 curl -v 可以发现 指向了代理ip和…

深入浅出理解SPP、ASPP、DSPP、MDSPP空间金字塔池化系列结构(综合版)

一、参考资料 目标检测&#xff1a;SPP-net SPP原理及实现 金字塔池化系列的理解SPP、ASPP SPP&#xff0c;PPM、ASPP和FPN结构理解和总结 二、空间金字塔池化(SPP) 原始论文&#xff1a;[1] 1. 引言 传统的卷积神经网络中&#xff0c;池化层通常采用固定的池化层级和固定…

使用SpringCache操作Redis缓存数据

SpringCache概念 SpringCache是一个框架&#xff0c;实现了基于注解的缓存功能&#xff0c;只需要简单的加一个注解&#xff0c;就能实现缓存功能。 SpringCache提供了一层抽象&#xff0c;底层可以切换不同的缓存实现&#xff0c;例如&#xff1a; EHCacheCaffeineRedis 使…

2024 年 1 月安全更新修补了 58 个漏洞(Android )

谷歌发布了针对 Android 平台 58 个漏洞的补丁&#xff0c;并修复了 Pixel 设备中的 3 个安全漏洞&#xff0c;拉开了 2024 年的序幕。 Android 2024 年 1 月更新的第一部分以 2024 年 1 月 1 日安全补丁级别发布在设备上&#xff0c;解决了框架和系统组件中的 10 个安全漏洞&…

学习笔记17——通俗易懂的三次握手四次挥手

提供一种博主本人觉得很好理解的三次握手和四次挥手场景&#xff0c;帮助记忆 三次握手过程 初始状态&#xff1a;客户端处于closed状态&#xff0c;服务器处于listen监听转台客户端向服务器发送一个SYN连接请求&#xff0c;并告诉对方自己此时初始化序列号为x&#xff0c;发送…

TYPE-C接口取电芯片介绍和应用场景

随着科技的发展&#xff0c;USB PDTYPE-C已经成为越来越多设备的充电接口。而在这一领域中&#xff0c;LDR6328Q PD取电芯片作为设备端协议IC芯片&#xff0c;扮演着至关重要的角色。本文将详细介绍LDR6328Q PD取电芯片的工作原理、应用场景以及选型要点。 一、工作原理 LDR63…

【昕宝爸爸小模块】HashMap用在并发场景存在的问题

HashMap用在并发场景存在的问题 一、✅典型解析1.1 ✅JDK 1.8中1.2 ✅JDK 1.7中1.3 ✅如何避免这些问题 二、 ✅HashMap并发场景详解2.1 ✅扩容过程2.2 ✅ 并发现象 三、✅拓展知识仓3.1 ✅1.7为什么要将rehash的节点作为新链表的根节点3.2 ✅1.8是如何解决这个问题的3.3 ✅除了…

【SSO】统一授权中心v1.0.0版本正式上线(多租户)

目录 背景 体验 技术栈 菜单 示例 背景 为了方便权限管理、用户登录授权、应用授权等&#xff0c;特地开发了当前的统一授权中心。 体验 邮箱注册即可登录体验 后台系统&#xff1a;https://sso.behappyto.cn/#/switch 技术栈 vue3tsspringbootmybatismysql 菜单 …

SpringBoot用MultipartFile.transferTo传递相对路径的问题

问题描述&#xff1a; 打算给自己的项目添加一个上传文件保存功能&#xff0c;于是我使用MultipartFile.transferTo()来完成这个功能&#xff0c;由于我的项目要部署到服务器&#xff0c;所以我使用了相对路径把上传的文件保存到当前项目的工作目录下&#xff0c;但是报错了&am…

C++上位软件通过Snap7开源库访问西门子S7-200/LOGO PLC/合信M226ES PLC V存储区的方法

前言 在前面例程中谈到了C 通过Snap7开源库S7通信库跟西门子S7-1200PLC/S7-1500PLC以及合信CTMC M226ES PLC/CPU226 PLC通信的方式方法和应用例程。但是遗憾的是Snap7中根据官方资料显示只能访问PLC的 DB区、MB区、C区、T区 、I区、Q区&#xff0c;并没有提到有关如何访问S7-20…

在学习爬虫前的准备

1. 写一个爬虫程序需要分几步 获取网页内容。 我们会通过代码给一个网站服务器发送请求&#xff0c;它会返回给我们网页上的内容。 在我们平时使用浏览器访问服务器内容是&#xff0c;本质上也是向服务器发送一个请求&#xff0c;然后服务器返回网页上的内容。只不过浏览器还会…

K8s Pod详解

1.Pod结构 每个Pod中都可以包含一个或者多个容器&#xff0c;这些容器可以分为两类&#xff1a; 用户程序所在的容器&#xff0c;数量可多可少 Pause容器&#xff0c;这是每个Pod都会有的一个根容器&#xff0c;它的作用有两个&#xff1a; 可以以它为依据&#xff0c;评估整个…

恒创科技:解决Windows服务器磁盘空间不足的问题

​  服务器硬盘的大小是决定空间是否充足的主要因素。但在日常使用中&#xff0c;服务器和网站备份会消耗大量存储空间&#xff0c;如果维护不当&#xff0c;最终将耗尽您的容量。同样&#xff0c;日志文件、临时文件和数据库可以在硬盘驱动器上或回收站中无休止地建立。当您…

手把手教你升级GPT-4,内附详细步骤

目录 1、先介绍一下 GPT 升级 2、第一种: 免费升级 支付宝购买礼品卡给美区 apple id 充值 3、第二种&#xff1a;5分钟快速升级 方法 平时我会在朋友圈分享一些利用 GPT-4 画的图片&#xff0c;比如下面这个扑克牌风格的"黑红小狗武士"。 用 GPT-4 做绘画仅仅是…

如何使用宝塔面板部署Inis博客并实现无公网ip环境远程访问

文章目录 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总…

大创项目推荐 深度学习机器视觉车道线识别与检测 -自动驾驶

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…