K8s Pod详解

1.Pod结构

每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:

  • 用户程序所在的容器,数量可多可少

  • Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:

    • 可以以它为依据,评估整个Pod的健康状态

    • 可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信

 这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel

2.Pod定义

下面是Pod的资源清单:

apiVersion: v1     #必选,版本号,例如v1
kind: Pod         #必选,资源类型,例如 Pod
metadata:         #必选,元数据name: string     #必选,Pod名称namespace: string  #Pod所属的命名空间,默认为"default"labels:           #自定义标签列表- name: string                 
spec:  #必选,Pod中容器的详细定义containers:  #必选,Pod中容器列表- name: string   #必选,容器名称image: string  #必选,容器的镜像名称imagePullPolicy: [ Always|Never|IfNotPresent ]  #获取镜像的策略 command: [string]   #容器的启动命令列表,如不指定,使用打包时使用的启动命令args: [string]      #容器的启动命令参数列表workingDir: string  #容器的工作目录volumeMounts:       #挂载到容器内部的存储卷配置- name: string      #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符readOnly: boolean #是否为只读模式ports: #需要暴露的端口库号列表- name: string        #端口的名称containerPort: int  #容器需要监听的端口号hostPort: int       #容器所在主机需要监听的端口号,默认与Container相同protocol: string    #端口协议,支持TCP和UDP,默认TCPenv:   #容器运行前需设置的环境变量列表- name: string  #环境变量名称value: string #环境变量的值resources: #资源限制和请求的设置limits:  #资源限制的设置cpu: string     #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数memory: string  #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数requests: #资源请求的设置cpu: string    #Cpu请求,容器启动的初始可用数量memory: string #内存请求,容器启动的初始可用数量lifecycle: #生命周期钩子postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止livenessProbe:  #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器exec:         #对Pod容器内检查方式设置为exec方式command: [string]  #exec方式需要制定的命令或脚本httpGet:       #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、portpath: stringport: numberhost: stringscheme: stringHttpHeaders:- name: stringvalue: stringtcpSocket:     #对Pod内个容器健康检查方式设置为tcpSocket方式port: numberinitialDelaySeconds: 0       #容器启动完成后首次探测的时间,单位为秒timeoutSeconds: 0          #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒periodSeconds: 0           #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次successThreshold: 0failureThreshold: 0securityContext:privileged: falserestartPolicy: [Always | Never | OnFailure]  #Pod的重启策略nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定- name: stringhostNetwork: false   #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络volumes:   #在该pod上定义共享存储卷列表- name: string    #共享存储卷名称 (volumes类型有很多种)emptyDir: {}       #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值hostPath: string   #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录path: string                #Pod所在宿主机的目录,将被用于同期中mount的目录secret:          #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部scretname: string  items:     - key: stringpath: stringconfigMap:         #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部name: stringitems:- key: stringpath: string
#小提示:
#	在这里,可通过一个命令来查看每种资源的可配置项
#   kubectl explain 资源类型         查看某种资源可以配置的一级属性
#	kubectl explain 资源类型.属性     查看属性的子属性
[root@master ~]# kubectl explain pod
KIND:     Pod
VERSION:  v1
FIELDS:apiVersion   <string>kind <string>metadata     <Object>spec <Object>status       <Object>[root@master ~]# kubectl explain pod.metadata
KIND:     Pod
VERSION:  v1
RESOURCE: metadata <Object>
FIELDS:annotations  <map[string]string>clusterName  <string>creationTimestamp    <string>deletionGracePeriodSeconds   <integer>deletionTimestamp    <string>finalizers   <[]string>generateName <string>generation   <integer>labels       <map[string]string>managedFields        <[]Object>name <string>namespace    <string>ownerReferences      <[]Object>resourceVersion      <string>selfLink     <string>uid  <string>

在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:

  • apiVersion <string> 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到

  • kind <string> 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到

  • metadata <Object> 元数据,主要是资源标识和说明,常用的有name、namespace、labels等

  • spec <Object> 描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述

  • status <Object> 状态信息,里面的内容不需要定义,由kubernetes自动生成

在上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:

  • containers <[]Object> 容器列表,用于定义容器的详细信息

  • nodeName <String> 根据nodeName的值将pod调度到指定的Node节点上

  • nodeSelector <map[]> 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上

  • hostNetwork <boolean> 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络

  • volumes <[]Object> 存储卷,用于定义Pod上面挂在的存储信息

  • restartPolicy <string> 重启策略,表示Pod在遇到故障的时候的处理策略

3.Pod配置

本小节主要来研究pod.spec.containers属性,这也是pod配置中最为关键的一项配置。

[root@master ~]# kubectl explain pod.spec.containers
KIND:     Pod
VERSION:  v1
RESOURCE: containers <[]Object>   # 数组,代表可以有多个容器
FIELDS:name  <string>     # 容器名称image <string>     # 容器需要的镜像地址imagePullPolicy  <string> # 镜像拉取策略 command  <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令args     <[]string> # 容器的启动命令需要的参数列表env      <[]Object> # 容器环境变量的配置ports    <[]Object>     # 容器需要暴露的端口号列表resources <Object>      # 资源限制和资源请求的设置

1.基本配置

创建pod-base.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-basenamespace: devlabels:user: heima
spec:containers:- name: nginximage: nginx:1.17.1- name: busyboximage: busybox:1.30

上面定义了一个比较简单Pod的配置,里面有两个容器:

  • nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)

  • busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)

# 创建Pod
[root@master pod]# kubectl apply -f pod-base.yaml
pod/pod-base created# 查看Pod状况
# READY 1/2 : 表示当前Pod中有2个容器,其中1个准备就绪,1个未就绪
# RESTARTS  : 重启次数,因为有1个容器故障了,Pod一直在重启试图恢复它
[root@master pod]# kubectl get pod -n dev
NAME       READY   STATUS    RESTARTS   AGE
pod-base   1/2     Running   4          95s# 可以通过describe查看内部的详情
# 此时已经运行起来了一个基本的Pod,虽然它暂时有问题
[root@master pod]# kubectl describe pod pod-base -n dev

2.镜像拉取

创建pod-imagepullpolicy.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-imagepullpolicynamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1imagePullPolicy: Always # 用于设置镜像拉取策略- name: busyboximage: busybox:1.30

imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:

  • Always:总是从远程仓库拉取镜像(一直远程下载)

  • IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)

  • Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)

默认值说明:

如果镜像tag为具体版本号, 默认策略是:IfNotPresent

如果镜像tag为:latest(最终版本) ,默认策略是always

# 创建Pod
[root@master pod]# kubectl create -f pod-imagepullpolicy.yaml
pod/pod-imagepullpolicy created# 查看Pod详情
# 此时明显可以看到nginx镜像有一步Pulling image "nginx:1.17.1"的过程
[root@master pod]# kubectl describe pod pod-imagepullpolicy -n dev
......
Events:Type     Reason     Age               From               Message----     ------     ----              ----               -------Normal   Scheduled  <unknown>         default-scheduler  Successfully assigned dev/pod-imagePullPolicy to node1Normal   Pulling    32s               kubelet, node1     Pulling image "nginx:1.17.1"Normal   Pulled     26s               kubelet, node1     Successfully pulled image "nginx:1.17.1"Normal   Created    26s               kubelet, node1     Created container nginxNormal   Started    25s               kubelet, node1     Started container nginxNormal   Pulled     7s (x3 over 25s)  kubelet, node1     Container image "busybox:1.30" already present on machineNormal   Created    7s (x3 over 25s)  kubelet, node1     Created container busyboxNormal   Started    7s (x3 over 25s)  kubelet, node1     Started container busybox

3.启动命令

在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?

原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。

创建pod-command.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-commandnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]

command,用于在pod中的容器初始化完毕之后运行一个命令。

稍微解释下上面命令的意思:

"/bin/sh","-c", 使用sh执行命令

touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件

while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间

# 创建Pod
[root@master pod]# kubectl create  -f pod-command.yaml
pod/pod-command created# 查看Pod状态
# 此时发现两个pod都正常运行了
[root@master pod]# kubectl get pods pod-command -n dev
NAME          READY   STATUS   RESTARTS   AGE
pod-command   2/2     Runing   0          2s# 进入pod中的busybox容器,查看文件内容
# 补充一个命令: kubectl exec  pod名称 -n 命名空间 -it -c 容器名称 /bin/sh  在容器内部执行命令
# 使用这个命令就可以进入某个容器的内部,然后进行相关操作了
# 比如,可以查看txt文件的内容
[root@master pod]# kubectl exec pod-command -n dev -it -c busybox /bin/sh
/ # tail -f /tmp/hello.txt
13:35:35
13:35:38
13:35:41
特别说明:通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。1 如果command和args均没有写,那么用Dockerfile的配置。2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数

4.环境变量

创建pod-env.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:name: pod-envnamespace: dev
spec:containers:- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]env: # 设置环境变量列表- name: "username"value: "admin"- name: "password"value: "123456"

env,环境变量,用于在pod中的容器设置环境变量。

# 创建Pod
[root@master ~]# kubectl create -f pod-env.yaml
pod/pod-env created# 进入容器,输出环境变量
[root@master ~]# kubectl exec pod-env -n dev -c busybox -it /bin/sh
/ # echo $username
admin
/ # echo $password
123456

这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。

5.端口设置

本小节来介绍容器的端口设置,也就是containers的ports选项。

首先看下ports支持的子选项:

[root@master ~]# kubectl explain pod.spec.containers.ports
KIND:     Pod
VERSION:  v1
RESOURCE: ports <[]Object>
FIELDS:name         <string>  # 端口名称,如果指定,必须保证name在pod中是唯一的		containerPort<integer> # 容器要监听的端口(0<x<65536)hostPort     <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略) hostIP       <string>  # 要将外部端口绑定到的主机IP(一般省略)protocol     <string>  # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。

接下来,编写一个测试案例,创建pod-ports.yaml

apiVersion: v1
kind: Pod
metadata:name: pod-portsnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1ports: # 设置容器暴露的端口列表- name: nginx-portcontainerPort: 80protocol: TCP
# 创建Pod
[root@master ~]# kubectl create -f pod-ports.yaml
pod/pod-ports created# 查看pod
# 在下面可以明显看到配置信息
[root@master ~]# kubectl get pod pod-ports -n dev -o yaml
......
spec:containers:- image: nginx:1.17.1imagePullPolicy: IfNotPresentname: nginxports:- containerPort: 80name: nginx-portprotocol: TCP
......

访问容器中的程序需要使用的是podIp:containerPort

6.资源配额

容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:

  • limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启

  • requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动

可以通过上面两个选项设置资源的上下限。

接下来,编写一个测试案例,创建pod-resources.yaml

apiVersion: v1
kind: Pod
metadata:name: pod-resourcesnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1resources: # 资源配额limits:  # 限制资源(上限)cpu: "2" # CPU限制,单位是core数memory: "10Gi" # 内存限制requests: # 请求资源(下限)cpu: "1"  # CPU限制,单位是core数memory: "10Mi"  # 内存限制

在这对cpu和memory的单位做一个说明:

  • cpu:core数,可以为整数或小数

  • memory: 内存大小,可以使用Gi、Mi、G、M等形式

# 运行Pod
[root@master ~]# kubectl create  -f pod-resources.yaml
pod/pod-resources created# 查看发现pod运行正常
[root@master ~]# kubectl get pod pod-resources -n dev
NAME            READY   STATUS    RESTARTS   AGE  
pod-resources   1/1     Running   0          39s   # 接下来,停止Pod
[root@master ~]# kubectl delete  -f pod-resources.yaml
pod "pod-resources" deleted# 编辑pod,修改resources.requests.memory的值为10Gi
[root@master ~]# vim pod-resources.yaml# 再次启动pod
[root@master ~]# kubectl create  -f pod-resources.yaml
pod/pod-resources created# 查看Pod状态,发现Pod启动失败
[root@master ~]# kubectl get pod pod-resources -n dev -o wide
NAME            READY   STATUS    RESTARTS   AGE          
pod-resources   0/2     Pending   0          20s    # 查看pod详情会发现,如下提示
[root@master ~]# kubectl describe pod pod-resources -n dev
......
Warning  FailedScheduling  <unknown>  default-scheduler  0/2 nodes are available: 2 Insufficient memory.(内存不足)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613684.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

恒创科技:解决Windows服务器磁盘空间不足的问题

​  服务器硬盘的大小是决定空间是否充足的主要因素。但在日常使用中&#xff0c;服务器和网站备份会消耗大量存储空间&#xff0c;如果维护不当&#xff0c;最终将耗尽您的容量。同样&#xff0c;日志文件、临时文件和数据库可以在硬盘驱动器上或回收站中无休止地建立。当您…

手把手教你升级GPT-4,内附详细步骤

目录 1、先介绍一下 GPT 升级 2、第一种: 免费升级 支付宝购买礼品卡给美区 apple id 充值 3、第二种&#xff1a;5分钟快速升级 方法 平时我会在朋友圈分享一些利用 GPT-4 画的图片&#xff0c;比如下面这个扑克牌风格的"黑红小狗武士"。 用 GPT-4 做绘画仅仅是…

如何使用宝塔面板部署Inis博客并实现无公网ip环境远程访问

文章目录 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总…

大创项目推荐 深度学习机器视觉车道线识别与检测 -自动驾驶

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…

ElasticSearch _update_by_query

根据查询条件进行数据更新 UPDATE job_call SET admin_id 0 WHERE admin_id 283; kibana.png 1.其中红色框的位置为query的内容&#xff0c;对应为SQL语句中的WHERE admin_id 283 2.划红色线的位置为修改内容&#xff0c;对应SQL中的SET admin_id 0。如果是更新多个字段s…

手轮脉冲平滑处理笔记

这是一个求手脉倍率((Hw_Control.mult_ratio)与手脉脉冲计数延迟次数即累计过去n次的平均值(Hw_Control.lag_num)之间关系算法的计算过程笔记文档 1、已知 mult_ratio=1时 lag_num=10; mult_ratio=10时 lag_num=20; .mult_ratio==100时 lag_num=30; 以此类推 2、设lag_num…

开关电源PFC电路原理详解及matlab仿真

PFC全称“Power Factor Correction”&#xff0c;意为“功率因数校正”。PFC电路即能对功率因数进行校正&#xff0c;或者说能提高功率因数的电路。是开关电源中很常见的电路。 在电学中&#xff0c;功率因数PF指有功功率P&#xff08;单位w&#xff09;与视在功率S&#xff08…

每日学习更新(LQR+iLQR)

一直想更新一下根据cost to go来推导LQR&#xff0c;之前的话可能会直接套问题&#xff0c;但是对于理论有些困惑&#xff0c;正好最近在学习ilqr轨迹生成/优化&#xff0c;因此来推一下公式&#xff0c;以下参考B站Dr_CAN&#xff0c;链接如下&#xff1a; 【最优控制】5_线性…

Maven在java中的实现(对java的项目进行打包)

前言: 在前面的文章中我们了解了Maven的作用,并在自己的电脑上安装配置好了Maven,也成功的在IDEA中添加了Maven,但是具体的实现还是有一些些小问题,那么接下来,我将带着大家对Java项目进行一次打包,系统的完成一次,并在途中解决一下会出现的问题. 我以图片中选中的这个包为例,…

【Kafka-3.x-教程】-【四】Kafka-消费者-Consumer

【Kafka-3.x-教程】专栏&#xff1a; 【Kafka-3.x-教程】-【一】Kafka 概述、Kafka 快速入门 【Kafka-3.x-教程】-【二】Kafka-生产者-Producer 【Kafka-3.x-教程】-【三】Kafka-Broker、Kafka-Kraft 【Kafka-3.x-教程】-【四】Kafka-消费者-Consumer 【Kafka-3.x-教程】-【五…

用握力器玩谷歌小恐龙游戏(二)

往期回顾 用握力器玩谷歌小恐龙游戏&#xff08;一&#xff09; GS-GAME-PC 前言 专门买了一个电钻&#xff0c;在握力器上钻出了两个孔&#xff0c;用来放两个引脚的按键&#xff0c;这样比之前用热熔胶的方式更干净&#xff0c;更稳定 加了一个18650的电池&#xff0c;之前…

ChatGPT提示词的高级技巧——解锁AI交互新境界

大家好我是在看&#xff0c;记录普通人学习探索AI之路。 这一讲我来介绍几种提示词的高级使用技巧。 1.拆解问题 对于一个一次性很难完整回答的大问题&#xff0c;我们可以将其拆解成若干子问题&#xff0c;再将这些问题逐步输入。 我们来看下面的例子&#xff1a; 2.迭代改…

RLHF与LLM训练的碰撞:寻找最佳实践之路!

了解更多公众号&#xff1a;芝士AI吃鱼 在讨论大型语言模型&#xff08;LLM&#xff09;时&#xff0c;无论是在研究新闻还是教程中&#xff0c;经常提到一个称为“带有人类反馈的强化学习”&#xff08;RLHF&#xff09;的过程。由于RLHF能够将人类偏好纳入优化过程&#xff0…

What does “grep -i“ do?

grep&#xff08; Global Regular Expression Print &#xff09;根据 给定的正则表达式 搜索文本&#xff0c;并将匹配的行打印出来 grep -i 表示查找的过程中忽略大小写 在已安装的rpm包里&#xff0c;查询是否有tree相关的包 rpm -qa | grep -i "tree"在文件中搜…

使用Python打造一个爱奇艺热播好剧提前搜系统

目录 一、系统功能设计 二、数据获取与处理 三、搜索功能实现 四、用户界面设计 五、系统部署与维护 六、总结 随着互联网的普及和人们对于娱乐需求的增加&#xff0c;视频网站成为了人们观看电视剧、电影等视频内容的主要渠道。爱奇艺作为国内知名的视频网站之一&#x…

使用 Asp.net core webapi 集成配置系统,提高程序的灵活和可维护性

前言&#xff1a;什么是集成配置系统&#xff1f; 集成配置系统的主要目的是将应用程序的配置信息与代码分离&#xff0c;使得配置信息可以在不需要修改代码的情况下进行更改。这样可以提高应用程序的灵活性和可维护性。 ASP.NET Core 提供了一种灵活的配置系统&#xff0c;可…

Flink构造宽表实时入库案例介绍

1. 安装包准备 Flink 1.15.4 安装包 Flink cdc的mysql连接器 Flink sql的sdb连接器 MySQL驱动 SDB驱动 Flink jdbc的mysql连接器 2. 入库流程图 3. Flink安装部署 上传Flink压缩包到服务器&#xff0c;并解压 tar -zxvf flink-1.14.5-bin-scala_2.11.tgz -C /opt/ 复…

显示器新赛道Type-C接口

如果把主机比作大脑&#xff0c;那显示器就是眼睛&#xff0c;没有眼睛&#xff0c;大脑再强大也发挥不出效果&#xff0c;所以显示器作为电脑最重要的输出设备&#xff0c;有着举足轻重的地位&#xff0c;可以说在生活中处处都有显示器的影子。其实显示器的历史也是科技发展史…

涛思数据获评北京市“专精特新”中小企业

众所周知&#xff0c;“专精特新”企业是国家引导中小企业增强自主创新能力和核心竞争力&#xff0c;不断提高中小企业发展质量和水平而实施的重大工程&#xff0c;旨在支持企业走专精特新发展之路&#xff0c;更好地促进企业高质量发展&#xff0c;也成为各领域产业链供应的关…

YOLOv8 Ultralytics:使用Ultralytics框架进行定向边界框对象检测

YOLOv8 Ultralytics&#xff1a;使用Ultralytics框架进行定向边界框对象检测 前言相关介绍前提条件实验环境安装环境项目地址LinuxWindows 使用Ultralytics框架进行定向边界框对象检测参考文献 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精…