二值分类器(Binary Classifier)是机器学习领域中最常见也是应用最广泛的分类器。评价二值分类器的指标很多,比如precision、recall、F1 score、P-R曲线等。相比而言,ROC曲线有很多优点,经常作为评估而知分类器最重要的指标之一。下面我们来详细了解一下ROC曲线的绘制方法和特点。
1. 什么是ROC曲线?
ROC曲线是Receiver Operating Characteristic Curve 的简称,中文名为“受试者工作特征曲线”。ROC曲线源于军事领域,而后在医学领域应用甚广,“受试者工作特征曲线”这一名称也正是来自于医学领域。
ROC曲线的横坐标为假阳性率(False Positive Rate, FPR);纵坐标为真阳性率(True Positive Rate, TPR)。FPR和TPR的计算方法分别为
上式中,P是真正的正样本的数量,N是真实的负样本数量,TP是P个正样本中被分类器预测为正样本的个数,FP是N个负样本中被分类器预测为正样本的个数。
为了更直观地说明这个问题,我们举一个医院诊断病人的例子。假设有10为意思癌症患者,其中有3位很不幸确实患了癌症(P=3),另外7位不是癌症患者(N=7)。医院对这10位疑似患者做了诊断,判断出3位癌症患者,其中有2位确实是真正的患者(TP=2)。那么真阳性率TPR=TP/P=2/3. 对于7为非癌症的患者来说,有一位很不幸被误诊为癌症患者(FP=1),那么假阳性率FPR=FP/N=1/7. 对于“该医院”这个分类器来说,这组分类结果就对应ROC曲线上的一个点(1/7,2/3)。
2.如何绘制ROC曲线?
事实上,ROC曲线是通过不断移动分类器的“截断点”来生成曲线上的一组关键点的,通过下面的例子进一步来解释“截断点”的概念。
在二值分类问题中,模型的输出一般都是预测样本为正例的概率。假设测试集中有20个样本,表2.1是模型的输出结果。样本按照预测概率从高到低排序。在输出最终的正例、负例之前,我们需要指定一个阈值,预测概率大于该阈值的样本会被判为正例,其他的全部都是负例。上面所说的“截断点”指的就是区分正负预测结果的阈值。
通过动态地调整截断点,从最高的得分开始(实际上是从正无穷开始,对应着ROC曲线的零点),逐渐调整到最低得分,每一个截断点都会对应一个FPR和TPR,在ROC图上绘制出每个截断点对应的位置,再连接所有点就得到最终的ROC曲线。
就此例来说,当截断点选择为正无穷时,模型把全部样本预测为负例,那么FP和TP必然都为0,FPR和TPR也都为0,因此曲线的第一个点的坐标就是(0,0)。当把截断点调整为0.9时,模型预测1号样本为正样本,并且该样本确实是正样本,因此,TP=1, 20个样本中,所有正例数量为P=10,故TPR=TP/P=1/10, 负样本总数N=10,故FPR=FP/N=0/10=0,对应ROC曲线上的点(0,0.1)。依次调整截断点,直到画出全部的关键点,再连接关键点即得到最终的ROC曲线,如图2.2所示。
其实,还有一种更直观地绘制ROC曲线的方法。首先,根据样本标签统计出正负样本的数量,假设正样本数量为P,负样本数量为N;接下来,把横轴的刻度间隔设置为1/N,纵轴的刻度间隔设置为1/P;再根据模型输出的预测概率对样本进行排序(从高到低);依次遍历样本,同时从零点开始绘制ROC曲线,每遇到一个正样本就沿纵轴方向绘制一个刻度间隔的曲线,每遇到一个负样本就沿横轴方向绘制一个刻度间隔的曲线,直到遍历完所有样本,曲线最终停在(1,1)这个点,整个ROC曲线绘制完成。
3.如何计算AUC?
AUC指的是ROC曲线下的面积大小,该值能够量化地反映基于ROC曲线衡量出的模型性能。计算AUC值只需要沿着ROC横轴做dx积分就可以了。由于ROC曲线一般都处于y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1-p就可以得到一个更好的分类器),所以AUC的取值一般在0.5-1之间。AUC越大,说明分类器越可能把真正的正样本排在前面,分类性能越好。
4.ROC曲线相比P-R曲线有什么特点?
当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。
举例来说,图2.3是ROC曲线和P-R曲线的对比图,其中图2.3(a)和图2.3(c)是ROC曲线,图2.3(b)和图2.3(d)是P-R曲线,图2.3(c)和图2.3(d)则是将测试集中的负样本数量增加10倍之后的曲线图。
可以看出,P-R曲线发生了明显的变化,而ROC曲线形状基本不变。这个特点让ROC曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能。这有什么实际意义呢?在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000甚至是1/10000. 若选择不同的测试集,P-R曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。但需要注意的是,选择P-R曲线还是ROC曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R曲线则能够更直观地反映其性能。