高并发下的计数器实现方式:AtomicLong、LongAdder、LongAccumulator

图片

一、前言

计数器是并发编程中非常常见的一个需求,例如统计网站的访问量、计算某个操作的执行次数等等。在高并发场景下,如何实现一个线程安全的计数器是一个比较有挑战性的问题。本文将介绍几种常用的计数器实现方式,包括AtomicLong、LongAdder和LongAccumulator,并深入讲解其中的CAS操作。

二、计数器

计数器是一种非常基础的数据结构,用于记录某个事件发生的次数。在并发编程中,由于多个线程可能同时对计数器进行修改,因此需要保证计数器的线程安全性。

三、AtomicLong

AtomicLong是Java中的一个原子类,主要作用是对长整形进行原子操作,保证并发情况下数据的安全性。它实现了一系列线程安全的方法,包括初始化为特定值和以原子方式设置当前值等。

AtomicLong的核心机制是通过CAS(Compare and Swap)操作来确保并发安全性。CAS是一种无锁算法,其核心思想是:如果内存中的值V符合预期值A,则将内存中值修改为B,否则不进行任何操作。整个过程是原子的,不会出现线程安全问题。在高并发环境下,当大量线程同时竞争更新同一个原子变量时,只有一个线程的CAS会成功,其他线程会不断尝试直到成功,这就可能造成大量线程竞争失败后,通过无限循环不断尝试自旋尝试CAS操作,白白浪费了CPU资源。

图片

图里可以看出在高并发情况下,当有大量线程同时去更新一个变量,任意一个时间点只有一个线程能够成功,绝大部分的线程在尝试更新失败后,会通过自旋的方式再次进行尝试,这样严重占用了 CPU 的时间片,进而导致系统性能问题。

多线程并发下AtomicLong实现计数器demo:


import java.util.concurrent.atomic.AtomicLong;public class AtomicLongCounter {
private AtomicLong counter = new AtomicLong(0);public void increment() {
long oldValue, newValue;
do {oldValue = counter.get();newValue = oldValue + 1;} while (!counter.compareAndSet(oldValue, newValue));}public long getCount() {
return counter.get();}public static void main(String[] args) throws InterruptedException {AtomicLongCounter counter = new AtomicLongCounter();
int threadCount = 10;Thread[] threads = new Thread[threadCount];for (int i = 0; i < threadCount; i++) {threads[i] = new Thread(() -> {
for (int j = 0; j < 1000; j++) {counter.increment();}});threads[i].start();}for (int i = 0; i < threadCount; i++) {threads[i].join();}System.out.println("计数器的值:" + counter.getCount());}
}

四、LongAdder

LongAdder是Java 8新增的一个类,主要用于解决高并发下的计数问题。与AtomicLong不同,LongAdder内部采用了分段锁技术,将一个大的计数空间分成若干个小的空间进行累加操作。每个小空间都有一个独立的锁,当多个线程同时对不同的小空间进行累加操作时,它们可以并行执行,从而提高了并发性能。

图片

如图所示,LongAdder 设计思想上,采用分段的方式降低并发冲突的概率。通过维护一个基准值 base 和 Cell 数组。

多线程并发下LongAdder实现计数器demo:


import java.util.concurrent.atomic.LongAdder;public class LongAdderCounter {
private final LongAdder longAdder = new LongAdder();public void increment() {longAdder.increment();}public long getCount() {
return longAdder.sum();}public static void main(String[] args) throws InterruptedException {LongAdderCounter counter = new LongAdderCounter();
int threadCount = 10;Thread[] threads = new Thread[threadCount];for (int i = 0; i < threadCount; i++) {threads[i] = new Thread(() -> {
for (int j = 0; j < 1000; j++) {counter.increment();}});threads[i].start();}for (int i = 0; i < threadCount; i++) {threads[i].join();}System.out.println("计数器的值:" + counter.getCount());}
}

五、LongAccumulator

LongAccumulator是Java 8新增的一个类,用于实现自定义的累加操作。它提供了一种简单而灵活的方式来实现复杂的累加逻辑。LongAccumulator内部维护了一个累加结果和一个标识位,当调用accumulate方法时,会根据标识位的值来决定是否直接返回结果还是进入累加逻辑。这种方式可以有效地避免重复计算和线程竞争问题。


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.util.LongAccumulator;public class LongAccumulatorCounter {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("LongAccumulatorCounter").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);LongAccumulator longAccumulator = sc.longAccumulator();JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5), 2);rdd.foreachPartition(partition -> {
for (int value : partition) {longAccumulator.add(value);}});System.out.println("累加器的值:" + longAccumulator.value());sc.stop();}
}

六、CAS(Compare and Swap)

CAS 全称:compare and swap,比较并交换。CAS操作是上述三种计数器实现方式的核心机制之一。它通过比较内存中的值和预期值是否相等来判断是否需要进行更新操作。如果相等,则将内存中的值修改为新值;否则不做任何操作。整个过程是原子的,不会出现线程安全问题。但是需要注意的是,在高并发场景下,当多个线程同时竞争同一个原子变量时,可能会出现“ABA”问题。即当一个线程读取了内存中的值A之后,另一个线程将其修改为B再修改为A,此时第一个线程再次读取该变量时会发现它的值仍然是A而不是B。为了解决这个问题,可以使用版本号等方式来解决“ABA”问题,使用Java提供的AtomicStampedReference 类。

七、总结

阿里巴巴推荐使用 LongAdder, 原因主要有以下几点:

高并发性能:LongAdder 采用分段锁的策略,可以避免 AtomicLong 中的竞争问题,提高并发性能。在分布式系统中,高并发性能是非常重要的。

可扩展性:LongAdder 支持可扩展性,可以通过增加更多的段来提高性能。这对于需要处理大量请求的分布式系统来说是非常有利的。

代码简单易懂:虽然LongAdder 的代码相对复杂一些,但是相对于 AtomicLong 来说更容易理解和维护。这对于开发人员来说是非常重要的。

更好的适用场景:阿里巴巴推荐使用 LongAdder 主要是因为在分布式系统中需要一个高性能、高可用的计数器实现。而 LongAdder 正好符合这个需求。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613004.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超市账单管理系统产品数据新增Servlet实现

超市账单管理系统产品数据新增Servlet实现 package com.test.controller; import java.io.IOException; import java.util.List; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import ja…

3.4 在开发中使用设计模式

现在&#xff0c;我们应该对设计模式的本质以及它们的组织方式有了初步的认识&#xff0c;并且能够理解ROPES过程在整体设计中的作用。通过之前章节对“体系结构”及其五个视图的探讨&#xff0c;我们打下了坚实的基础。初步了解了UML的基本构建模块后&#xff0c;我们现在可以…

gem5学习(11):将缓存添加到配置脚本中——Adding cache to the configuration script

目录 一、Creating cache objects 1、Classic caches and Ruby 二、Cache 1、导入SimObject(s) 2、创建L1Cache 3、创建L1Cache子类 4、创建L2Cache 5、L1Cache添加连接函数 6、为L1ICache和L1DCache添加连接函数 7、为L2Cache添加内存侧和CPU侧的连接函数 完整代码…

适用于安防 音响 车载等产品中中的音频接口选型分析

在人工智能兴起之后&#xff0c;安防市场就成为了其全球最大的市场&#xff0c;也是成功落地的最主要场景之一。对于安防应用而言&#xff0c;智慧摄像头、智慧交通、智慧城市等概念的不断涌现&#xff0c;对于芯片产业催生出海量需求。今天&#xff0c;我将为大家梳理GLOBALCH…

自动化测试框架pytest系列之强大的fixture功能,为什么fixture强大?一文拆解它的功能参数。(三)

自动化测试框架pytest系列之基础概念介绍(一)-CSDN博客 自动化测试框架pytest系列之21个命令行参数介绍(二)-CSDN博客 接上两篇文章继续 &#xff1a; 3.3 pytest支持的初始化和清除函数 学过unittest的都知道 &#xff0c;unittest有四个函数 &#xff0c;分别是 &#xff…

16.linux计划任务管理

linux计划任务管理 文章目录 linux计划任务管理1. crond计划任务概述2. crond配置文件详解3. crond计划任务管理4. crond配置编写实例5. crond计划任务调试 1. crond计划任务概述 什么是计划任务&#xff0c;计划任务类似于我们平时生活中的闹钟。 在Linux系统的计划任务服务c…

判断是否是json字符串

一、在isJson.js文件里创建一个isJson类并抛出 /*** isJson 类用于判断一个字符串是否为有效的 JSON 字符串。* class isJson* param {string} str - 要判断的字符串。* returns {boolean} 如果字符串是有效的 JSON 字符串&#xff0c;则返回 true&#xff1b;否则返回 false。…

PPT插件-大珩助手-快速构建自己的图形

绘图板-快速构建自己的图形 通过手绘的方式&#xff0c;快速构建自己的想法和创意&#xff0c;通过在PPT中插入绘图&#xff0c;植入背景透明的绘图&#xff0c;点击画笔可切换橡皮擦&#xff0c;可以清空画板重新绘制。 素材库-存储图形 通过素材库存储自己的图形 图形调整…

操作系统期末考复盘

简答题4题*5 20分计算题2题*5 10分综合应用2题*10 20分程序填空1题10 10分 1、简答题&#xff08;8抽4&#xff09; 1、在计算机系统上配置OS的目标是什么&#xff1f;作用主要表现在哪个方面&#xff1f; 在计算机系统上配置OS&#xff0c;主要目标是实现:方便性、有…

如何把123转换成字符串的123

在许多编程语言中&#xff0c;将数字123转换为字符串的"123"是非常直接的。以下是几种常见编程语言的示例&#xff1a; Python num 123 str_num str(num) print(str_num) # 输出: 123 JavaScript let num 123; let str_num num.toString(); console…

【WebGIS实例】(12)MapboxGL解决叠加图层的点击事件冒泡

解决方法一&#xff1a; 监听有冲突的图层 map.on(click, layerName, e > {e.preventDefault()console.log(上面的图层)console.log(点击的要素, e.features[0]) })// 下面的那个图层&#xff1a;阻止默认事件&#xff0c;在下面的e可以看到_defaultPrevented: false&#…

three.js 学习笔记(学习中1.10更新) |

文章目录 three.js 学习笔记基础概念透视相机 第一个three.js应用threejs画布尺寸和布局canvas画布宽高度动态变化 坐标辅助器 THREE.AxesHelper实现动画效果requestAnimationFrame时间相关属性和方法 THREE.Clock类 相机控件 轨道控制器OrbitControls 灯光点光源点光源辅助观察…

17.SELinux

SELinux 文章目录 SELinux1、SELinux简介2、SELinux的模式3、管理SELinux上下文4、bool开关 1、SELinux简介 为了保障linux系统的安全&#xff0c;除了firewalld防火墙外&#xff0c;linux系统管理员通常会控制用户和组的权限&#xff0c;这种基于用户和组的安全模型称之为主动…

m1 + swoole(hyperf) + yasd + phpstorm 安装和debug

参考文档 Mac M1安装报错 checking for boost... configure: error: lib boost not found. Try: install boost library Issue #89 swoole/yasd GitHub 1.安装boost库 brew install boostbrew link boost 2.下载yasd git clone https://github.com/swoole/yasd.git 3.编…

Golang 中哪些类型可以作为 map 类型的 key?

目录 可以作为 map 键的类型 不能作为 map 键的类型 最佳实践 小结 在 Go 语言中&#xff0c;map 是一种内置的关联数据结构类型&#xff0c;由一组无序的键值对组成&#xff0c;每个键都是唯一的&#xff0c;并与一个对应的值相关联。本文将详细介绍哪些类型的变量可以作为…

轻量化神奇!看3D模型格式转换工具HOOPS Exchange如何轻松实现减面操作?

现在很多CAD模型都比较复杂&#xff0c;有时候为了一些特殊用途&#xff08;轻量化显示、布尔运算、CAE网格剖分等&#xff09;&#xff0c;需要到对原始模型进行减面操作。在HOOPS Exchange中&#xff0c;就提供了对模型进行减面操作支持&#xff0c;以下内容就是HOOPS Exchan…

亚信安慧AntDB数据库容灾复制原理

AntDB数据库作为通信运营商领域的杰出的数据服务提供者&#xff0c;一直以来都十分重视数据安全问题&#xff0c;不断通过技术进步、方案创新等方式提升数据容灾能力。在信息化的时代&#xff0c;数据已经成为了重要的资源&#xff0c;对于企业来说&#xff0c;如何存储和管理这…

15.vdo管理

vdo管理 文章目录 vdo管理一、VDO基本概念二、常用操作三、验证VDO卷 一、VDO基本概念 VDO&#xff08;Virtual Data Optimize虚拟数据优化&#xff09; 通过压缩或删除存储设备上的数据来优化存储空间。VDO层放置在现有块存储设备例如RAID设备或本地磁盘的顶部。这些块设备也…

docker微服务案例

文章目录 建立简单的springboot项目(boot3)boot2建立通过dockerfile发布微服务部署到docker容器编写Dockerfile打包成镜像运行镜像微服务 建立简单的springboot项目(boot3) 1.建立module 2. 改pom <?xml version"1.0" encoding"UTF-8"?> <…