《矩阵分析》笔记

来源:【《矩阵分析》期末速成 主讲人:苑长(5小时冲上90+)】https://www.bilibili.com/video/BV1A24y1p76q?vd_source=c4e1c57e5b6ca4824f87e74170ffa64d

这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没时间听太长的课,就看了b站上这个视频,笔记几乎就是原视频copy,和教材相比有一些没提到(如奇异值分解、Householder矩阵、Given矩阵、广义逆矩阵等),但大部分有,可供参考。

目录

  • 第1章 线性空间和线性变换
      • 考点一:线性空间的基与维数
      • 考点二:证明线性变换
      • 考点三:像子空间、核子空间(用线性变换定义的子空间)
      • 考点四:线性变换的矩阵(求线性变换T在某基底下的矩阵)
  • 第2章 内积空间
      • 考点一:内积空间的定义
      • 考点二:标准正交基
      • 考点三:正规矩阵的对角化
  • 第3章 矩阵的标准形
      • 考点一:哈密顿-凯莱(Hamilton-Cayley)定理
      • 考点二:最小多项式
      • 考点三:约当标准形(Jordan标准形)
      • 考点四:史密斯标准形(Smith标准形)
      • 考点五:用史密斯标准形方法求解约当标准形(法二)常用
  • 第4章 向量和矩阵的范数
      • 考点一:证明向量范数
      • 考点二:证明矩阵范数
      • 考点三:范数与正规矩阵的证明题
  • 第5章 矩阵的分解
      • 考点一:矩阵的三角分解
      • 考点二:矩阵的QR分解
      • 考点三:矩阵的满秩分解
  • 第6章 矩阵的函数
      • 考点一:矩阵的导数(对一个变量的导数)
      • 考点二:矩阵的幂级数
      • 考点三:矩阵函数(A-->f(At)) 常见(A-->e~At~)
      • 考点四:矩阵函数在微分方程组中的应用
      • 考点五:矩阵函数的性质(e^At^-->A)
  • 第7章 矩阵特征值的估计
      • 考点一:Gerschgorin盖尔圆定理
  • 第8章 矩阵的直积(Kronecker积)
      • 考点一:直积
      • 考点二:拉直

第1章 线性空间和线性变换

考点一:线性空间的基与维数

  1. 线性空间:若同时满足封闭性和8条规则,则称非空集合V为数域P上的线性空间

  2. 基底:V中线性无关的一组向量,其他元组都可以被他们线性表示, d i m V = n dimV=n dimV=n

  3. 子空间:W对于线性空间V所定义的加法运算和数乘运算也构成P上的线性空间,则称W为V的线性子空间,简称子空间

  4. 生成子空间

​ 设α1,α2,…,αm是V上的m个元素,由这m个元素的任意组合构成的集合{k1α1+k2a2+…kmam}对V中的加法及数乘封闭,因而这个子集是V中的子空间,记作:L(α1,α2,…,αm)

​ (1)V1∩V2 (2)V1+V2

  1. 求和子空间的方法

  2. 维数定理: d i m V 1 + d i m V 2 = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dimV~1~+dimV~2~ = dim(V~1~+V~2~) + dim(V~1~∩V~2~) dimV 1 +dimV 2 =dim(V 1 +V 2 )+dim(V 1 V 2 )

【例1.1】求V1+V2的维数及一个基

​ 向量竖写为矩阵,化为阶梯形,一组极大无关组就是一个基,维数为阶梯数

考点二:证明线性变换

  1. 变换:设V是P上的线性空间,从V到V的映射称为V中的变换(线性变换是常见的变换)

  2. 线性变换:设T是V上的变换,如果对于任意的α,β∈V,k∈P都有

    T ( a + b ) = T a + T b ; T ( k a ) = k T a T(a+b)=Ta+Tb; T(ka) = kTa T(a+b)=Ta+Tb;T(ka)=kTa ,则称T为V上的线性变换

【例1.2】定义变换T如下:TA= CA-AC。证明: T是线性变换

​ 把A替换为a+b、ka,列出T(a+b),Ta+Tb,T(ka),kTa

考点三:像子空间、核子空间(用线性变换定义的子空间)

  1. 像子空间: T V = T α ∣ α 属于 V TV={Tα|α属于V} TV=Tαα属于V

    像子空间是由V中所有元素的像Tα构成的(Tα是α通过线性变换T得到的,α∈V)

  2. 核子空间: T − 1 ( 0 ) = k e r T = α ∣ α ∈ V , T α = 0 T^{-1}(0) = kerT = {α|α∈V,Tα=0} T1(0)=kerT=ααVTα=0

    核子空间中的元素α在线性变换T的作用下转换为0

  3. 例如:投影变换{(x1, x2, x3)}三维空间

​ T(x1, x2, x3) = (x1, x2, 0)

​ TV = {(x1, x2, 0)},二维空间,维数为2

​ T’(0) = {(0, 0, x3)},一维空间,维数为1

  1. 维数定理2:设T是n维空间上的线性变换,则 d i m T V = d i m T − 1 ( 0 ) = n dimTV = dimT^{-1}(0)=n dimTV=dimT1(0)=n

考点四:线性变换的矩阵(求线性变换T在某基底下的矩阵)

  1. 用矩阵A来表达线性变换T

    定义: ( T α 1 , T α 2 , . . . , T α n ) = ( α 1 , α 2 , . . . , α n ) A (Tα_1,Tα_2,...,Tα_n) = (α_1,α_2,...,α_n)A (Tα1Tα2,...,Tαn)=(α1α2,...,αn)A

  2. 求同一个线性变换在不同基底下的矩阵
    在这里插入图片描述

p.s. 求逆方法:(A|E)–>(E|A-1)

【例1.4】在这里插入图片描述
在这里插入图片描述

第2章 内积空间

考点一:内积空间的定义

  1. 定义:
    在这里插入图片描述

  2. 元素大小:

考点二:标准正交基

  1. 标准正交基:

  2. 用施密特(Schmidt)正交化的方法求标准正交基
    在这里插入图片描述

【例2.1】

考点三:正规矩阵的对角化

  1. 定义:
    在这里插入图片描述
    此时V叫作复内积空间或者酉空间

  2. 酉矩阵的定义:设A∈Cn×n且AHA=AAH=E,则称A为酉矩阵

  3. 正规矩阵的定义:设A∈Cn×n且AHA=AAH,则称A为正规矩阵

  4. 对角形矩阵、实对称矩阵、反实对称矩阵、厄密特矩阵、反厄密特矩阵、正交矩阵、酉矩阵都是正规矩阵

  5. 正规矩阵对角化:正规矩阵一定可以对角化,即存在酉矩阵U使得UHAU= Λ, Λ的对角线元素为A的特征值

第3章 矩阵的标准形

考点一:哈密顿-凯莱(Hamilton-Cayley)定理

  1. 哈密顿凯莱定理:每个n阶矩阵都是它的特征多项式的根。

    设A为n阶矩阵,$f(λ)=|λE-A|=λn+a_{n-1}λ{n-1}+…+a_1λ+a_0 $

​ 则 f ( A ) = A n + a n − 1 A n − 1 + . . . + a 1 A + a 0 E = 0 f(A)=A^n+a_{n-1}A^{n-1}+...+a_1A+a_0E=0 f(A)=An+an1An1+...+a1A+a0E=0

  1. 简化运算:求φ(A)

    φ ( λ ) = f ( λ ) ⋅ q ( λ ) + r ( λ ) φ(λ)=f(λ)·q(λ)+r(λ) φ(λ)=f(λ)q(λ)+r(λ)

    φ ( A ) = f ( A ) ⋅ q ( A ) + r ( A ) = 0 + r ( A ) = r ( A ) φ(A)=f(A)·q(A)+r(A)=0+r(A)=r(A) φ(A)=f(A)q(A)+r(A)=0+r(A)=r(A)

【例3.1】

考点二:最小多项式

  1. 特征多项式: f ( λ ) = ∣ λ E − A ∣ f(λ)=|λE-A| f(λ)=λEA,称为矩阵A的特征多项式

  2. 零化多项式:若A是一个方针,φ(λ)是一个多项式, φ ( λ ) = a m λ m + a m − 1 λ m − 1 + . . . + a 1 λ + a 0 φ(λ)=a_mλ^m+a_{m-1}λ^{m-1}+...+a_1λ+a_0 φ(λ)=amλm+am1λm1+...+a1λ+a0,则称φ(λ)是A的零化多项式

  3. 特征多项式就是矩阵A的零化多项式;特征多项式×任一多项式还是零化多项式;零化多项式有无穷多个

  4. 最小多项式:设A∈Cn×n,在A的零化多项式中,次数最低的首项系数为1的多项式,称为矩阵A的最小多项式,记作m(λ)

  5. 最小多项式的跟<==>特征多项式(对同一矩阵而言)

    设矩阵A属于Cn×n的所有特征值λ1,…,λs,A的特征多项式为f(λ)=|λE-A|

    则A的最小多项式一定具有如下形式: m ( λ ) = ( λ − λ 1 ) n 1 ( λ − λ 2 ) n 2 . . . ( λ − λ s ) n s m(λ)=(λ-λ_1)^{n_1}(λ-λ_2)^{n_2}...(λ-λ_s)^{n_s} m(λ)=(λλ1)n1(λλ2)n2...(λλs)ns

【例3.2】
在这里插入图片描述

考点三:约当标准形(Jordan标准形)

  1. λ矩阵:设矩阵A的元素都是λ的多项式,形如

  2. 行列式因子:A(λ)中所有非零的k阶子式的首项系数为1的最大公因式,D(λ),称为A的一个k级行列式因子

  3. 不变因子:d1=D1,d2=D2/D1,d3=D3/D2,…,dn=Dn/Dn-1

  4. 初级因子:把每个次数大于零的不变因子分解为互不相同的一次因式的方幂的乘积,所有这些一次因式的方幂(相同的必须按出现次数计算),称为A的初级因子

  5. 约当标准形定义:称ri阶矩阵在这里插入图片描述

  6. 求约当标准形的方法

    1. 法一:用行列式因子法

【例3.3】
在这里插入图片描述
(二阶有9个,略)
在这里插入图片描述

考点四:史密斯标准形(Smith标准形)

  1. 矩阵A的初等变换

    1. 互换矩阵A的任意两行/列

    2. 以非零的数k乘A的某一行/列

    3. 以多项式φ(λ)乘以A的某一行/列,加到另一行/列上

      (以上三种变换不会改变行列式因子)

  2. 史密斯标准形:

  3. 任一个非零多项式矩阵A都可以经过初等变换化为史密斯标准形

  4. 化为史密斯标准形的具体步骤

    1. 先确定左上角第一个元素d1=D1(一阶行列式因子)

    2. 将d1所在的行和列的其他元素都消为0(通过初等变换),得到

    3. 再确定新矩阵B1(λ)的左上角第一个元素d2=新D1‘(新D1‘为新矩阵B1(λ)的一阶行列式因子)

      得到

    4. 重复这个过程,即可得到史密斯标准形

【例3.4】求Smith标准形和不变因子

在这里插入图片描述

考点五:用史密斯标准形方法求解约当标准形(法二)常用

  1. 史密斯标准形

【例3.5】求约当标准形

第4章 向量和矩阵的范数

考点一:证明向量范数

  1. 向量范数的定义:
    在这里插入图片描述

则称||x||为Cn上的向量范数,简称向量范数

  1. 常用的向量范数
    在这里插入图片描述

【例4.1】
在这里插入图片描述

考点二:证明矩阵范数

1.矩阵范数的定义:
在这里插入图片描述

  1. 常用的矩阵范数
    在这里插入图片描述
    在这里插入图片描述

  2. 相容性:在这里插入图片描述

  3. 谱半径:在这里插入图片描述

  4. 谱半径与范数:在这里插入图片描述

【例4.2】
在这里插入图片描述

考点三:范数与正规矩阵的证明题

  1. 正规矩阵对角化:正规矩阵一定可以对角化,即存在酉矩阵U使得UHAU= Λ, Λ的对角线元素为A的特征值

    【例4.3】在这里插入图片描述

第5章 矩阵的分解

考点一:矩阵的三角分解

  1. Dolittle分解法(A=LR)

    矩阵特点(以三阶为例)
    在这里插入图片描述

【例5.1】求矩阵的Dolittle分解
在这里插入图片描述

考点二:矩阵的QR分解

  1. QR分解定理:A=QR(A: n阶复矩阵,Q: 酉矩阵,R: 上三角矩阵)

  2. QR分解的一般步骤(以三阶方矩为例)

    1. 把矩阵A写成列向量的形式:A=(α1,α2,α3)

    2. 用施密特正交化方法,把α1,α2,α3正交化

    3. 在这里插入图片描述在这里插入图片描述
      在这里插入图片描述

【例5.2】 求矩阵的QR分解

考点三:矩阵的满秩分解

  1. 满秩分解:将矩阵A分解为列满秩×行满秩矩阵,形如:在这里插入图片描述

  2. 满秩分解的一般步骤

    1. 作初等行变换:

【例5.3】求矩阵的满秩分解
在这里插入图片描述

第6章 矩阵的函数

考点一:矩阵的导数(对一个变量的导数)

  1. 函数矩阵:以实变量t的实函数aij(t)为元素的矩阵在这里插入图片描述

  2. 函数矩阵对一个变量的导数在这里插入图片描述

【例6.1】求dA/dt
在这里插入图片描述

考点二:矩阵的幂级数

  1. 矩阵幂级数:设 A = ( a i j ∈ C n × n ) A=(a_{ij}∈C^{n×n}) A=(aijCn×n),称形如在这里插入图片描述

  2. 收敛性:设幂级数Σk=0akxk的收敛半径为R,A∈Cn×n
    在这里插入图片描述

  3. 收敛半径:R=1/ρ,ρ=limk->∞=|ak+1/ak|

【例6.2】判断矩阵幂级数
在这里插入图片描述
在这里插入图片描述

考点三:矩阵函数(A–>f(At)) 常见(A–>eAt

  1. 计算矩阵函数的方法:最小多项式法

  2. 计算矩阵函数的一般步骤:
    在这里插入图片描述

【例6.3】求矩阵函数eAt


考点四:矩阵函数在微分方程组中的应用

  1. 一阶线性常系数齐次微分方程组
    在这里插入图片描述

  2. 一阶线性常系数非齐次微分方程组
    在这里插入图片描述

【例6.4】

考点五:矩阵函数的性质(eAt–>A)

  1. deAt/dt=AeAt=eAtA,则[deAt/dt]|t=0=AdeA·0=Ae0=A

在这里插入图片描述

第7章 矩阵特征值的估计

考点一:Gerschgorin盖尔圆定理

  1. 盖尔圆定义
    在这里插入图片描述

  2. 盖尔圆定理:矩阵A∈Cn×n的全体特征值都在它的n个盖尔圆构成的并集之中

  3. A的列盖尔圆:A∈Cn×n与AT的特征值相同,根据盖尔圆定理A的特征值也在AT的n个盖尔圆构成的并集之中,称AT的盖尔圆为A的列盖尔圆

【例7.1】估计矩阵的特征分布

  1. 推论:若A为实矩阵A∈Rn×n,且A的n个盖尔圆是孤立的,则A有n个互不相同的实特征值

【例7.2】画出矩阵盖尔圆草图、矩阵能够对角化吗?

  1. 根据盖尔圆理论,对任何矩阵A,特征值一定满足|λaii|≤Ri

    若λ=0,则|λaii|≤Ri

    若矩阵A严格对角占优,即|λaii|>Ri,则λ≠0,|A|≠0

  2. A为实矩阵,特征方程|λE-A|=0为实代数方程,它的复根一定成对出现,一定是共轭的,即a±ib的形式

【例7.3】

第8章 矩阵的直积(Kronecker积)

考点一:直积

  1. 直积的定义:设矩阵A=(aij)m×n,B=(bij)p×q
  2. 在这里插入图片描述

【例8.1】
在这里插入图片描述

  1. 矩阵直积的性质
    在这里插入图片描述
    在这里插入图片描述

【例8.2】求A⊗B的一个特征值和特征向量
在这里插入图片描述

【例8.3】
在这里插入图片描述

【例8.4】
在这里插入图片描述

考点二:拉直

  1. 拉直的定义:在这里插入图片描述

  2. 拉直的性质:在这里插入图片描述
    在这里插入图片描述
    (改错) A B ( 拉直 ) = ( A ⊗ E p ) B ( 拉直 ) AB(拉直)=(A⊗E~p~)B(拉直) AB(拉直)=(AE p )B(拉直)(按B展开)

    1. 定理
      在这里插入图片描述
      A ⊗ E n − ( 改为 ) − > A ⊗ E p A⊗E~n-(改为)->A⊗E~p AE n(改为)>AE p

【例8.5】
在这里插入图片描述

∵ ( A ⊗ B ) ( x ⊗ y ) = ( A x ) ⊗ ( B y ) ∴ ( A ⊗ E n ) ( E m ⊗ B T ) = ( A ⊗ B T ) ∵(A⊗B)(x⊗y)=(Ax)⊗(By) ∴(A⊗En)(Em⊗BT)=(A⊗BT) (AB)(xy)=(Ax)(By)(AEn)(EmBT)=(ABT)

  1. 线性矩阵方程组:设A∈Cm×m,B∈Cn×n,F∈Cm×n,X∈Cm×n
    在这里插入图片描述

【例8.6】
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606247.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全球企业绿色供应链数据(含CITI指数和CATI指数,2014-2023年)

数据简介&#xff1a;发文趋势与主题分布 数据来源&#xff1a;公众环境研究中心&#xff08;IPE&#xff09; 时间跨度 CITI指数&#xff1a;2014-2023年&#xff1b; CATI指数&#xff1a;2021-2023年 数据范围&#xff1a;品牌型企业&#xff0c;温室气体重点排放行业的上…

某市公共资源交易网

目标网站首页&#xff1a;aHR0cDovL2dnenkuendmd2IudGouZ292LmNu/ 分析页面&#xff1a;aHR0cDovL2dnenkuendmd2IudGouZ292LmNuL3h3engvaW5kZXhfMi5qaHRtbA 点击前URL http://ggzy.zwfwb.tj.gov.cn:80/zwyw/1030977.jhtml 点击后URL http://ggzy.zwfwb.tj.gov.cn/zwyw/PtP89W…

Kettle Local引擎使用记录(二):问题记录及解决方法

Kettle Local &#x1f4da; 前言⁉️问题记录❓问题一&#xff1a;Database type not found!…database type with plugin id [Oracle] couldnt be found!❕原因&#xff1a;没有初始化Kettle环境❗解决&#xff1a;添加监听器&#xff0c;进行Kettle环境初始化 ❓问题二&…

Spring 见解 7 基于注解的AOP控制事务

8.基于注解的AOP控制事务 8.1.拷贝上一章代码 8.2.applicationContext.xml <!-- 开启spring对注解事务的支持 --> <tx:annotation-driven transaction-manager"transactionManager"/> 8.3.service Service Transactional(readOnlytrue,propagation Pr…

需求跟踪矩阵(RTM)是什么

什么是可追溯性矩阵&#xff1f; 可追溯性矩阵是一个文档&#xff0c;它与需要多对多关系以检查关系的完整性的任何两个基线文档相关联。它用于跟踪需求并检查是否满足当前项目需求。 什么是需求追踪矩阵&#xff1f; 需求可追溯性矩阵&#xff08;RTM&#xff09;是一个文档…

自动化软件测试流程的七个步骤和内容

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;软件测试面试题分享&#xff1a; 1000道软件测试面试题及答案&#x1f4e2;软件测试实战项目分享&#xff1a; 纯接口项目-完…

java 创建一个可执行的jar包小程序

第1步&#xff1a;写好代码 public class Main {public static void main(String[] args) {String str "hahah";if (StringUtils.isBlank(str)) {System.out.println(str);}System.out.println("Hello world!");} }第2步&#xff1a;设置 Artifact 选择入…

【netstat】

netstat netstat Proto是协议&#xff0c;TCP、UDP Recv-Q表示网络接收队列 Send-Q表示网络发送队列&#xff0c;没有ack的数据 Local Address本地ip地址和端口 Foreign Address服务器的ip和端口 State连接状态 State的种类&#xff1a; Established-活跃的连接 Listen-等待连…

软件测试|Python中的变量与关键字详解

简介 在Python编程中&#xff0c;变量和关键字是非常重要的概念。它们是构建和控制程序的基本要素。本文将深入介绍Python中的变量和关键字&#xff0c;包括它们的定义、使用方法以及一些常见注意事项。 变量 变量的定义 变量是用于存储数据值的名称。在Python中&#xff0…

听GPT 讲Rust源代码--compiler(12)

File: rust/compiler/rustc_data_structures/src/graph/dominators/mod.rs 文件mod.rs位于Rust编译器源代码中的rustc_data_structures/src/graph/dominators目录下。这个文件的作用是实现支配树&#xff08;dominator tree&#xff09;的计算算法。 在编译器优化中&#xff0c…

谁动了我的注册表?免费的注册表对比分析工具

关于这款工具&#xff0c;可以在B站搜谁动了我的注册表&#xff0c;UP主名字为有限的未知。该注册表对比分析工具视频教程链接如下。谁动了我的注册表&#xff1f;注册表比对分析工具 & 手动实现右键菜单自由_哔哩哔哩_bilibili 声明&#xff1a;该款注册表分析软件&#…

Redis之集群方案比较

哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态&#xff0c;如果master节点异常&#xff0c;则会做主从切换&#xff0c;将某一台slave作为master&#xff0c;哨兵的配置略微复杂&#xff0c;并且性能和高可用性等各方面表现一般&a…

【UE Niagara学习笔记】03 - 火焰喷射效果

目录 效果 步骤 一、创建粒子系统 二、制作火焰动画 三、改为GPU粒子 四、循环播放粒子动画 五、火焰喷射效果雏形 六、火焰颜色 效果 步骤 一、创建粒子系统 1. 新建一个Niagara系统&#xff0c;选择模板 命名为“NS_Flame_Thrower”&#xff08;火焰喷射&#…

学完Python,不做程序员,只接兼职,哎,就是玩儿

现在这个时代&#xff0c;人人开始追求做斜杠青年&#xff0c;多方面开展副业&#xff0c;赚取几份工资。有很多朋友就抓住了Python的风口&#xff0c;靠着Python兼职月入一万。那么学完Python&#xff0c;有哪些可以做的兼职呢&#xff1f; 一、闲暇时间&#xff0c;接自由单…

【css】快速实现鼠标悬浮变色效果

<div class"nav-item"><div class"ic-img"></div><div>切换</div> </div>.nav-item {width: 100rem;height: 45rem;line-height: 45rem;display: flex;text-align: center;justify-content: center;align-items: cent…

java每日一题——输出9x9乘法表(答案及编程思路)

前言&#xff1a; 打好基础&#xff0c;daydayup! 题目&#xff1a;输出下图9x9乘法表 编程思路&#xff1a;java只能输出行&#xff0c;不能输出列&#xff0c;所以考虑好每一行输出的内容即可 public class demo {public static void main(String[] args) {for (int i 1; i…

文档审阅批注的合并和对比

#创作灵感# 最近在改论文&#xff0c;Feedback返回的时候&#xff0c;把之前的批注都删了&#xff0c;这就增加了工作量&#xff0c;看起来不方便&#xff0c;所以就需要将删掉的批注全部复原。 那在原来的文档重新在修改一遍&#xff0c;工作量还是很大的&#xff0c;所以这里…

数字新生态:低代码开发的实践应用

低代码开发是一种快速构建软件应用程序的方法&#xff0c;极大地简化了传统编码的流程。本文将探讨数字新生态中低代码开发的实践应用&#xff0c;以及它如何推动业务创新和提高开发效率。 引言 随着信息技术的飞速发展&#xff0c;数字化转型已成为企业和组织的当务之急。但是…

两种方式实现mysql截取年月日

select date_format(now(), %Y-%m-%d) select substring(now(), 1, 10)

三剑客前端教程

前端教程 结构层&#xff08;html&#xff09;表现层&#xff08;css&#xff09;行为层&#xff08;javascript&#xff09; HTML 超文本标记语言&#xff09; HTML&#xff08;超文本标记语言——HyperText Markup Language&#xff09;是构成 Web 世界的一砖一瓦。它定义…