强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)

文章目录

  • 概览:RL方法分类
  • 时序差分学习(Temporal Difference,TD)
    • TD for state values
      • Basic TD
      • 🟡TD vs. MC
    • 🟦Sarsa (TD for action values)
      • Basic Sarsa
      • 变体1:Expected Sarsa
      • 变体2:n-step Sarsa
    • 🟦Q-learing (TD for optimal action values)
    • 🟡TD算法汇总
  • *随机近似(SA)&随机梯度下降(SGD)
    • Robbins-Monro(RM)算法
    • 随机梯度下降(Stochastic Gradient Descent,SGD)
    • BGD / MBGD / SGD


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:(更新中)

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

时序差分学习(Temporal Difference,TD)

先前的内容介绍了如何在无模型(model-free)的情况下,基于蒙特卡洛方法(Monte Carlo,MC)来进行策略评估。实际上,无模型的强化学习方法还有另外一个重要分支:时序差分学习(Temporal Difference,TD)。

最基础的时序差分学习估计状态值,而后续提出的Sarsa和Q-learning方法则直接对动作值进行估计。

*注:时序差分的原理部分依赖于随机优化理论,可参阅本文后续的随机近似(SA)&随机梯度下降(SGD)章节。

TD for state values

Basic TD

最原始的TD Learning算法:在策略评估中估计给定策略 π \pi π的状态值 v π v_\pi vπ,本质上是在无模型的情况下求解贝尔曼方程(解法类似于RM算法,详见后一章节)。

  • v t + 1 ( s t ) = v t ( s t ) − α ( s t ) [ v t ( s t ) − [ r t + 1 + γ v t ( s t + 1 ) ] ] v_{t+1}(s_t) = v_t(s_t) - \alpha(s_t) [v_t (s_t) - [r_{t+1} + \gamma v_t(s_{t+1})] ] vt+1(st)=vt(st)α(st)[vt(st)[rt+1+γvt(st+1)]]
    • * α t ( s t ) \alpha_t (s_t) αt(st)是学习率,通常设为很小的常数
  • v t + 1 ( s ) = v t ( s ) , ∀ s ≠ s t v_{t+1} (s) = v_t (s), \quad \forall s \neq s_t vt+1(s)=vt(s),s=st

t = 0 , 1 , 2 , ⋯ t =0, 1,2, \cdots t=0,1,2,时刻,更新被访问状态 s t s_t st的状态值估计 v t + 1 ( s t ) v_{t+1}(s_t) vt+1(st),但不更新其他未访问状态的状态值估计。

TD的目标:使得估计值 v t ( s t ) v_{t}(s_t) vt(st)接近 v ˉ t \bar{v}_t vˉt(*对于估计动作值的TD算法而言,是使得 q t ( s t , a t ) q_t(s_t, a_t) qt(st,at)接近于 q ˉ t \bar{q}_t qˉt
v t + 1 ( s t ) ⏟ new estimation = v t ( s t ) ⏟ current estimation − α ( s t ) [ v t ( s t ) − [ r t + 1 + γ v t ( s t + 1 ) ⏟ TD target  v ˉ t ] ⏞ TD error  δ t ] \underbrace{v_{t+1}(s_t)}_{\text{new estimation}} = \underbrace{v_t(s_t)}_{\text{current estimation}} - \alpha(s_t) [\overbrace{v_t (s_t) - [\underbrace{r_{t+1} + \gamma v_t(s_{t+1})}_{\text{TD target } \bar{v}_t}]}^{\text{TD error } \delta_t} ] new estimation vt+1(st)=current estimation vt(st)α(st)[vt(st)[TD target vˉt rt+1+γvt(st+1)] TD error δt]

  • TD target v ˉ t = r t + 1 + γ v t ( s t + 1 ) \bar{v}_t = r_{t+1} + \gamma v_t(s_{t+1}) vˉt=rt+1+γvt(st+1)
  • TD error δ t = v t ( s t ) − [ r t + 1 + γ v t ( s t + 1 ) ] = v t ( s t ) − v ˉ t \delta_t = v_t (s_t) - [r_{t+1} + \gamma v_t(s_{t+1})] = v_{t}(s_t) - \bar{v}_t δt=vt(st)[rt+1+γvt(st+1)]=vt(st)vˉt
    • t t t t + 1 t+1 t+1两个时刻的difference
    • 描述了 v t v_t vt v π v_\pi vπ之间的差异( v t v_t vt是对 v π v_\pi vπ的估计):若 v t = v π v_t = v_\pi vt=vπ,则 δ t = 0 \delta_t = 0 δt=0

这种最原始的TD算法不能用来估计动作值,也不能用来搜索最优策略。

*注:不同文献和资料中的公式表述存在差异,比如Sutton书中(参考资料2)的TD形式如下:
V ( S t ) ← V ( S t ) + α [ R t + 1 + γ V ( S t + 1 ) − V ( S t ) ] V(S_t) \larr V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)] V(St)V(St)+α[Rt+1+γV(St+1)V(St)]

TD算法本质上是求解贝尔曼期望方程(Bellman Expectation Equation):
v π ( s ) = E [ R + γ v π ( S ′ ) ∣ S = s ] , s ∈ S v_\pi(s) = \mathbb{E} [R + \gamma v_\pi (S') | S = s], \quad s \in S vπ(s)=E[R+γvπ(S)S=s],sS

TD算法的收敛性:如满足以下条件,则当 t → ∞ t\rarr\infin t时, v t ( s ) v_t(s) vt(s)可以收敛至 v π ( s ) v_\pi(s) vπ(s)(w.p.1, ∀ s ∈ S \forall s \in \mathcal{S} sS
∀ s ∈ S \forall s \in \mathcal{S} sS ∑ t a t ( s ) = ∞ \textstyle\sum_{t} a_t(s) = \infin tat(s)= ∑ t a t 2 ( s ) < ∞ \textstyle\sum_{t} a_t^2(s) < \infin tat2(s)<
*需要对每个状态访问很多次(理论上是无穷次)

🟡TD vs. MC

TD / SarsaMC
Online:可以使用每步的reward,立即更新状态/动作值Offline:需要等待每个episode数据采集完毕
Continuing & Episodic tasks仅Episodic tasks
Bootstrapping:依赖于初始估计和历史估计Non-bootstrapping:直接估计,不依赖初始值
Lower estimation variance:只依赖少数几个随机变量Higher estimation variance:依赖的随机变量较多

TD估计的期望是有偏的,因为其依赖于初始估计(Bootstrapping),但随着数据量的增加,最终会收敛到正确的估计值;相反,MC的期望是无偏估计。

🟦Sarsa (TD for action values)

Basic Sarsa

目标:估计给定策略 π \pi π的动作值 q π ( s , a ) q_\pi(s, a) qπ(s,a)
数据: { ( s t , a t , r t + 1 , s t + 1 , a t + 1 ) } \{(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})\} {(st,at,rt+1,st+1,at+1)}

SARSA(State-Action-Reward-State-Action) 算法:

  • q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − [ r t + 1 + γ q t ( s t + 1 , a t + 1 ) ] ] q_{t+1} (s_{t}, a_t) = q_{t} (s_{t}, a_t) - \alpha_t (s_t, a_t) [q_{t} (s_t, a_t) - [r_{t+1} + \gamma {\color{red} q_t (s_{t+1}, a_{t+1})}]] qt+1(st,at)=qt(st,at)αt(st,at)[qt(st,at)[rt+1+γqt(st+1,at+1)]]
  • q t + 1 ( s , a ) = q t ( s , a ) , ∀ ( s , a ) ≠ ( s t , a t ) q_{t+1} (s, a) = q_t (s, a), \quad \forall (s, a) \neq (s_t, a_t) qt+1(s,a)=qt(s,a),(s,a)=(st,at)
    • α t ( s t , a t ) \alpha_t (s_t, a_t) αt(st,at)是取决于 s t s_t st a t a_t at的学习率

*与原始TD算法的差异:将公式中的 v ( s t ) v(s_t) v(st)替换为 q ( s t , a t ) q(s_t, a_t) q(st,at),因此Sarsa是TD算法的动作值估计的版本

Sarsa求解贝尔曼期望方程的动作值形式:
q π ( s , a ) = E [ R + γ q π ( S ′ , A ′ ) ∣ s , a ] , ∀ s , a q_\pi(s, a) = \mathbb{E} [R + \gamma q_\pi (S', A') | s, a], \quad \forall s, a qπ(s,a)=E[R+γqπ(S,A)s,a],s,a
其中, R ∼ p ( R ∣ s , a ) R \sim p (R | s ,a) Rp(Rs,a) S ′ ∼ p ( S ′ ∣ s , a ) S' \sim p(S' | s, a) Sp(Ss,a) A ′ ∼ π ( A ′ ∣ S ′ ) A' \sim \pi(A' | S') Aπ(AS) ∼ \sim 表示服从某种概率分布)。

注意到Sarsa所依赖的5个变量中,在给定 s t s_t st a t a_t at的情况下,只有 a t + 1 a_{t+1} at+1依赖于策略 π t \pi_t πt,而 r t + 1 r_{t+1} rt+1 s t + 1 s_{t+1} st+1本身并不依赖于策略,而是依赖于转移概率分布(通过采样确定)。

Sarsa收敛性类似于TD,略。

Sarsa+策略提升的完整算法:(也属于GPI框架)

  • 更新动作值(策略评估):Sarsa的公式,略
  • 更新策略(策略提升):ε-Greedy方法,基于 q t + 1 ( s t , a ) q_{t+1} (s_t, a) qt+1(st,a)立即更新
    • π k + 1 ( a ∣ s t ) = { 1 − ε ∣ A ∣ ( ∣ A ∣ − 1 ) if  a = arg max ⁡ a q t + 1 ( s t , a ) ε ∣ A ∣ otherwise \pi_{k+1}(a|s_t) = \begin{cases} 1-\frac{\varepsilon}{|\mathcal{A}|} (|\mathcal{A}|-1) &\text{if } a = \argmax_a q_{t+1}(s_t, a) \\ \frac{\varepsilon}{|\mathcal{A}|} &\text{otherwise} \end{cases} πk+1(ast)={1Aε(A1)Aεif a=argmaxaqt+1(st,a)otherwise

Sarsa有两个变体:Expected Sarsa和n-step Sarsa

变体1:Expected Sarsa

  • q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − [ r t + 1 + γ E q t ( s t + 1 , A ) ] ] q_{t+1} (s_{t}, a_t) = q_{t} (s_{t}, a_t) - \alpha_t (s_t, a_t) [q_{t} (s_t, a_t) - [r_{t+1} + \gamma {\color{red} \mathbb{E} q_t (s_{t+1}, A)}]] qt+1(st,at)=qt(st,at)αt(st,at)[qt(st,at)[rt+1+γEqt(st+1,A)]]
  • q t + 1 ( s , a ) = q t ( s , a ) , ∀ ( s , a ) ≠ ( s t , a t ) q_{t+1} (s, a) = q_t (s, a), \quad \forall (s, a) \neq (s_t, a_t) qt+1(s,a)=qt(s,a),(s,a)=(st,at)

其中, E q t ( s t + 1 , A ) = v t ( s t + 1 ) \mathbb{E} q_t (s_{t+1}, A) = v_t (s_{t + 1}) Eqt(st+1,A)=vt(st+1)是状态值而非动作值

Expected Sarsa求解以下形式的贝尔曼公式:
q π ( s , a ) = E [ R t + 1 + γ v π ( S t + 1 ) ∣ S t = s , A t = a ] q_\pi (s, a) = \mathbb{E} [R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t =s, A_t =a] qπ(s,a)=E[Rt+1+γvπ(St+1)St=s,At=a]

与Sarsa的区别:

  • 改变了TD Target
  • 需要更多的计算量,但减少了随机变量个数(不需要对 a t + 1 a_{t+1} at+1采样),随机性减少

变体2:n-step Sarsa

n-step Sarsa是Sarsa的推广,统一了Sarsa和MC的思想

  • Sarsa基于单步采样进行估计,MC基于∞步采样进行估计,因此n-step Sarsa相当于是二者的折中
  • n-step Sarsa既不是online的,也不是offline的(或者是是特殊的online方法)

image.png

公式及其他细节略。
n-step Sarsa本身仅用于策略估计,也可以和策略提升相结合。

🟦Q-learing (TD for optimal action values)

Q-learing直接估计最优动作值,因此不需要策略评估-策略提升的过程。

  • q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − [ r t + 1 + γ max ⁡ a ∈ A q t ( s t + 1 , a ) ] ] q_{t+1} (s_{t}, a_t) = q_{t} (s_{t}, a_t) - \alpha_t (s_t, a_t) [q_{t} (s_t, a_t) - [r_{t+1} + \gamma {\color{red} \max_{a \in \mathcal{A}} q_t (s_{t+1}, a)}]] qt+1(st,at)=qt(st,at)αt(st,at)[qt(st,at)[rt+1+γmaxaAqt(st+1,a)]]
  • q t + 1 ( s , a ) = q t ( s , a ) , ∀ ( s , a ) ≠ ( s t , a t ) q_{t+1} (s, a) = q_t (s, a), \quad \forall (s, a) \neq (s_t, a_t) qt+1(s,a)=qt(s,a),(s,a)=(st,at)

Q-learing和Sarsa在公式上的唯一区别是TD target(公式的红字部分)。每个状态下,Q-learing在对action进行优化,但Sarsa只是依据当前策略选择action。

Sarsa求解贝尔曼方程,但Q-learing求解贝尔曼最优方程:
q ( s , a ) = E [ R t + 1 + γ max ⁡ a q ( s t + 1 , a ) ∣ S t = s , A t = a ] , ∀ s , a q(s, a) = \mathbb{E} [ R_{t+1} + \gamma \max_a q(s_{t+1}, a) | S_t =s, A_t = a ], \quad \forall s,a q(s,a)=E[Rt+1+γmaxaq(st+1,a)St=s,At=a],s,a

此外,Sarsa属于on-policy算法,而Q-learing属于off-policy算法。

  • Sarsa所需的 a t + 1 a_{t+1} at+1依赖于 π t \pi_t πt,之后根据动作值估计来更新策略为 π t + 1 \pi_{t+1} πt+1,可见其行为策略与目标策略相同
  • Q-learing所需的数据为 { ( s t , a t , r t + 1 , s t + 1 ) } \{(s_t, a_t, r_{t+1}, s_{t+1})\} {(st,at,rt+1,st+1)},这4个变量都不依赖于特定策略(或者说可以由任意策略生成),因此其行为策略与目标策略可以不同
    • *二者相同时,Q-learing即为on-policy

Q-learing算法步骤(off-policy):
由行为策略 π B \pi_B πB生成若干episode,每个episode包含 { s 0 , a 0 , r 1 , s 1 , a 1 , r 2 , ⋯ } \{ s_0, a_0, r_1, s_1, a_1, r_2, \cdots \} {s0,a0,r1,s1,a1,r2,}

  • *例子: π B \pi_B πB可以取 ε = 1 \varepsilon =1 ε=1的ε-Greedy,保证对每个动作等概率探索

在每个episode的每个时间步 t = 0 , 1 , 2 , ⋯ t=0,1,2,\cdots t=0,1,2,中:

  • 更新最优动作值(q-value)的估计:Q-learing的公式,略
  • 更新目标策略 π T \pi_T πT π T , t + 1 = { 1 if  a = arg max ⁡ a q t + 1 ( s t , a ) 0 otherwise \pi_{T, t+1} = \begin{cases} 1 &\text{if } a = \argmax_a q_{t+1} (s_t, a) \\ 0 &\text{otherwise} \end{cases} πT,t+1={10if a=argmaxaqt+1(st,a)otherwise
    • 是greedy,但不是ε-greedy(不需要探索)

对于off-policy的Q-learing而言,行为策略的探索性越强,其目标策略收敛于最优策略的速度越快。

🟡TD算法汇总

所有估计动作值的TD算法可以由下式统一表示:
q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − q ˉ t ] q_{t+1} (s_{t}, a_t) = q_{t} (s_{t}, a_t) - \alpha_t (s_t, a_t) [q_{t} (s_t, a_t) - {\color{blue} \bar{q}_t}] qt+1(st,at)=qt(st,at)αt(st,at)[qt(st,at)qˉt]
其中, q ˉ t \bar{q}_t qˉt为TD target,而TD算法的目标即使得 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)接近 q ˉ t \bar{q}_t qˉt,或者说缩小TD error( q t ( s t , a t ) − q ˉ t q_{t} (s_t, a_t) - {\bar{q}_t} qt(st,at)qˉt)。

不同算法的差异在于 q ˉ t \bar{q}_t qˉt的形式不同:【注意到,TD和MC实际上是有关联的,主要差异是采样的数量不同】

算法 q ˉ t \bar{q}_t qˉt形式
Sarsa q ˉ t = r t + 1 + γ q t ( s t + 1 , a t + 1 ) \bar{q}_t = r_{t+1} + \gamma q_{t} (s_{t+1}, a_{t+1}) qˉt=rt+1+γqt(st+1,at+1)
Expected-Sarsa q ˉ t = r t + 1 + γ ∑ a π t ( a ∣ s t + 1 ) q t ( s t + 1 , a ) \bar{q}_t = r_{t+1} + \gamma \textstyle\sum_a\pi_t(a|s_{t+1}) q_{t} (s_{t+1}, a) qˉt=rt+1+γaπt(ast+1)qt(st+1,a)
n-step Sarsa q ˉ t = r t + 1 + γ r t + 2 + ⋯ + γ n q t ( s t + n , a t + n ) \bar{q}_t = r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n} q_{t} (s_{t+n}, a_{t+n}) qˉt=rt+1+γrt+2++γnqt(st+n,at+n)
Q-learning q ˉ t = r t + 1 + γ max ⁡ a q t ( s t + 1 , a ) \bar{q}_t = r_{t+1} + \gamma \textstyle\max_a q_{t} (s_{t+1}, a) qˉt=rt+1+γmaxaqt(st+1,a)
Monte Carlo q ˉ t = r t + 1 + γ r t + 2 + ⋯ + γ ∞ r t + ∞ \bar{q}_t = r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{\infin} r_{t+\infin} qˉt=rt+1+γrt+2++γrt+(均为单步折扣奖励,没有 q t q_t qt

不同算法求解的公式也不同:
image.png

*随机近似(SA)&随机梯度下降(SGD)

【*注:本节内容主要是为理解时序差分的原理提供资料,但与强化学习核心内容关系不大,可以跳过。】

考虑求解均值估计(Mean Estimation)问题,MC利用采样的算数均值来估计期望,但缺点是需要等待所有样本收集完毕后再进行计算。
另一种求解思路:用增量和迭代方法进行计算,有多少数据利用多少数据。

举例:如何增量和迭代式地计算均值?
w k + 1 = 1 k ∑ i = 1 k x i w_{k+1} = \frac{1}{k} \sum_{i=1}^{k} x_i wk+1=k1i=1kxi,可知 w k + 1 = w k − 1 k ( w k − x k ) w_{k+1} = w_k - \frac{1}{k} (w_k - x_k) wk+1=wkk1(wkxk)。基于该方式,只需要基于过去的均值计算结果 w k w_k wk和新采样 x k x_k xk,即可计算出总体均值【思路上有点像是EWMA】。采样数量越多,计算结果越准确。

可以对上式进一步推广,得到 w k + 1 = w k − α k ( w k − x k ) w_{k+1} = w_k - {\color{red}\alpha_k} (w_k - x_k) wk+1=wkαk(wkxk),其中 α k > 0 \alpha_k>0 αk>0。可以证明,当 α k \alpha_k αk满足一定条件时,其迭代的计算结果会收敛至期望值。这是一种特殊的随机近似(SA)/随机梯度下降(SGD)算法。

随机近似(Stochastic Approximation,SA):一类随机迭代算法,适用于方程求解或优化问题,但不需要目标函数/方程的表达式/导数形式。

Robbins-Monro(RM)算法

目标:在不知道 g ( w ) g(w) g(w)的具体形式的情况下(视作黑盒),求解 g ( w ) = 0 g(w) = 0 g(w)=0,设其解为 w ∗ w^* w
* g ( w ) g(w) g(w)须为单调递增

RM算法:
w k + 1 = w k − a k g ~ ( w k , η k ) w_{k+1} = w_k - a_k \tilde{g} (w_k, \eta_k) wk+1=wkakg~(wk,ηk)

  • w k w_k wk:对 w ∗ w^* w的第 k k k次估计
  • g ~ ( w k , η k ) = g ( w k ) + η k \tilde{g} (w_k, \eta_k) = g(w_k) + \eta_k g~(wk,ηk)=g(wk)+ηk,其中 η k \eta_k ηk是噪声,因此 g ~ \tilde{g} g~表示对 g g g的带有噪声的观测
  • a k > 0 a_k>0 ak>0:系数

RM算法依赖于数据:

  • 输入序列: { w k } \{w_k\} {wk}
  • 带噪声的输出序列: { g ~ ( w k , η k ) } \{\tilde{g} (w_k, \eta_k)\} {g~(wk,ηk)}

RM定理(收敛性):在RM算法中,当以下三个条件成立时, w k w_k wk会按照概率1(w.p.1)收敛至 w ∗ w^* w

  1. g ( w ) g(w) g(w)的梯度需满足: 0 < c 1 ≤ ∇ w g ( w ) ≤ c 2 , ∀ w 0 < c_1 \leq \nabla_{w} g(w) \leq c_2, \quad\forall w 0<c1wg(w)c2,w
    1. g g g须为单调递增,以保证 g ( w ) = 0 g(w)=0 g(w)=0的解存在且唯一
    2. g g g的梯度(对于多元函数,导数沿梯度方向取最大值)须有上界,以避免函数发散
  2. a k a_k ak需满足: ∑ k = 1 ∞ a k = ∞ \textstyle\sum_{k=1}^{\infin} a_k = \infin k=1ak= ∑ k = 1 ∞ a k 2 < ∞ \textstyle\sum_{k=1}^{\infin} a_k^2 < \infin k=1ak2<
    1. 平方和小于无穷:随着 k → ∞ k\rarr\infin k a k a_k ak收敛至0
    2. 和等于无穷: a k a_k ak收敛至0的速度不能太快
  3. η k \eta_k ηk需满足: E [ η k ∣ H k ] = 0 \mathbb{E} [\eta_k | \mathcal{H}_k] = 0 E[ηkHk]=0 E [ η k 2 ∣ H k ] < ∞ \mathbb{E} [\eta_k^2 | \mathcal{H}_k] < \infin E[ηk2Hk]<
    1. η k \eta_k ηk的均值为0且方差有界
    2. 常见情形: { η k } \{\eta_k\} {ηk}为独立同分布随机序列(但不要求是正态分布)

a k a_k ak的常见选择: a k = 1 k a_k = \frac{1}{k} ak=k1(或非常小的常数,为了避免最近采样的权重下降)

  • ∑ k = 1 ∞ a k = ∞ \textstyle\sum_{k=1}^{\infin} a_k = \infin k=1ak=

欧拉常数(Euler-Mascheroni constant)
γ = lim ⁡ n → ∞ ( ∑ k = 1 n 1 k − ln ⁡ n ) ≈ 0.557 \gamma = \lim_{n\rarr\infin} (\sum_{k=1}^{n}\frac{1}{k} - \ln n) \approx 0.557 γ=limn(k=1nk1lnn)0.557
n → ∞ n\rarr\infin n时, ln ⁡ n → ∞ \ln n\rarr\infin lnn,因此可知 ∑ k = 1 ∞ 1 k = ∞ \sum_{k=1}^{\infin}\frac{1}{k} = \infin k=1k1=

  • ∑ k = 1 ∞ a k 2 < ∞ \textstyle\sum_{k=1}^{\infin} a_k^2 < \infin k=1ak2<

巴塞尔问题(Basel Problem)
∑ k = 1 ∞ 1 k 2 = π 2 6 < ∞ \sum_{k=1}^{\infin}\frac{1}{k^2} = \frac{\pi^2}{6} < \infin k=1k21=6π2<

随机梯度下降(Stochastic Gradient Descent,SGD)

SGD是RM算法的一种特殊情况。

目标:求解以下优化问题
min ⁡ w J ( w ) = E [ f ( w , X ) ] \min_w \quad J(w) = \mathbb{E} [f(w, X)] wminJ(w)=E[f(w,X)]

  • w w w:待优化参数
  • X X X:随机变量, E \mathbb{E} E是关于 X X X的期望
  • w w w X X X可以是标量或向量,函数 f ( ⋅ ) f(\cdot) f()为标量

*最小化用梯度下降,最大化用梯度上升

求解方法1:GD
w k + 1 = w k − α k ∇ w E [ f ( w k , X ) ] = w k − α k E [ ∇ w f ( w k , X ) ] w_{k+1} = w_k - \alpha_k \nabla_w \mathbb{E}[f(w_k, X)] = w_k - \alpha_k \mathbb{E}[\nabla_w f(w_k, X)] wk+1=wkαkwE[f(wk,X)]=wkαkE[wf(wk,X)]

  • 缺陷:期望难以直接计算

求解方法2:BGD(Batch Gradient Descent),基于数据采样计算期望
E [ ∇ w f ( w k , X ) ] ≈ 1 n ∑ i = 1 n ∇ w f ( w k , x i ) \mathbb{E}[\nabla_w f(w_k, X)] \approx \frac{1}{n} \sum_{i=1}^{n} \nabla_w f(w_k, x_i) E[wf(wk,X)]n1i=1nwf(wk,xi) n n n次采样)
w k + 1 = w k − α k 1 n ∑ i = 1 n ∇ w f ( w k , x i ) w_{k+1} = w_k - \alpha_k \frac{1}{n} \sum_{i=1}^{n} \nabla_w f(w_k, x_i) wk+1=wkαkn1i=1nwf(wk,xi)

  • 缺陷: w k w_k wk的每次迭代都需要很多采样

求解方法3:SGD
w k + 1 = w k − α k ∇ w f ( w k , x k ) w_{k+1} = w_k - \alpha_k \nabla_w f(w_k, x_k) wk+1=wkαkwf(wk,xk)

  • 与GD的差异:将真实梯度(true gradient) E [ ∇ w f ( w k , X ) ] \mathbb{E}[\nabla_w f(w_k, X)] E[wf(wk,X)]替换为随机梯度(stochastic gradient) ∇ w f ( w k , x k ) \nabla_w f(w_k, x_k) wf(wk,xk)
  • 与BGD的差异:仅采样一次( n = 1 n=1 n=1

SGD收敛性:若以下三个条件成立,则 w k w_k wk会按照概率1(w.p.1)收敛至 w ∗ w^* w ∇ w E [ f ( w , X ) ] = 0 \nabla_w \mathbb{E} [f(w, X)] = 0 wE[f(w,X)]=0的解)

  1. 0 < c 1 ≤ ∇ w 2 f ( w , X ) ≤ c 2 0 < c_1 \leq \nabla_{w}^2 f(w, X) \leq c_2 0<c1w2f(w,X)c2(二阶梯度)
    1. f ( ⋅ ) f(\cdot) f()是严格凸函数(标量)
  2. ∑ k = 1 ∞ a k = ∞ \textstyle\sum_{k=1}^{\infin} a_k = \infin k=1ak= ∑ k = 1 ∞ a k 2 < ∞ \textstyle\sum_{k=1}^{\infin} a_k^2 < \infin k=1ak2<
  3. { x k } k = 1 ∞ \{x_k\}_{k=1}^{\infin} {xk}k=1为独立同分布(i.i.d)

SGD的收敛模式:

  • w k w_k wk距离 w ∗ w^* w较远时,SGD的表现与GD相似,即 w k w_k wk随着迭代不断向 w ∗ w^* w逼近
  • w k w_k wk距离 w ∗ w^* w较近时,SGD会表现出较大的随机性,即 w k w_k wk w ∗ w^* w附近波动

BGD / MBGD / SGD

算法形式说明
BGD w k + 1 = w k − α k 1 n ∑ i = 1 n ∇ w f ( w k , x i ) w_{k+1} = w_k - \alpha_k \frac{1}{n} \sum_{i=1}^{n} \nabla_w f(w_k, x_i) wk+1=wkαkn1i=1nwf(wk,xi)基于所有采样,最接近于均值
MBGD (mini batch) w k + 1 = w k − α k 1 m ∑ j ∈ I k ∇ w f ( w k , x j ) w_{k+1} = w_k - \alpha_k \frac{1}{m} \sum_{j \in \mathcal{I}_k} \nabla_w f(w_k, x_j) wk+1=wkαkm1jIkwf(wk,xj)基于部分采样( ∣ I k ∣ = m ≤ n \vert \mathcal{I}_k \vert=m \leq n Ik=mn
SGD w k + 1 = w k − α k ∇ w f ( w k , x k ) w_{k+1} = w_k - \alpha_k \nabla_w f(w_k, x_k) wk+1=wkαkwf(wk,xk)基于单个采样

MBGD可以视作BGD和SGD的一种中间情况

  • m = 1 m=1 m=1:MBGD即为SGD
  • m = n m=n m=n:MBGD接近于BGD,但不完全相同
    • BGD对每个采样使用1次,MBGD是从 n n n个采样中随机选取 n n n次,每个采样被使用的次数可能超过一次【大概是有放回和不放回的区别】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/605156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

教程:Centos6迁移旧虚拟机文件后的网络配置教程,完美解决虚拟机移动后的网络ip变化问题

博主在工作后,想整整之前大学的虚拟机集群,因此特意从之前的旧电脑把虚拟机文件给拷贝了过来,在导入到vm-workstation,顺便能启动虚拟机后,发现之前的静态ip已经跟现在的宿主机网络不一样。想着重新配置,但觉得太麻烦,故想到了修改网卡的mac地址+网卡重配置方法,完美解…

【已解决】如何用c语言位运算输出浮点数数据

本博文源于笔者正在学习的c语言如何利用位运算输出浮点数数据类型&#xff0c;浮点数在其底部也是用二进制来处理&#xff0c;又考虑到他是低位在前高位在后的原理&#xff0c;因此进行了这样的代码编写 问题浮现 想要用c语言的位运算输出浮点数 问题源码 #include<stdi…

etcd储存安装

目录 etcd介绍: etcd工作原理 选举 复制日志 安全性 etcd工作场景 服务发现 etcd基本术语 etcd安装(centos) 设置&#xff1a;etcd后台运行 etcd 是云原生架构中重要的基础组件&#xff0c;由 CNCF 孵化托管。etcd 在微服务和 Kubernates 集群中不仅可以作为服务注册…

[大厂实践] 重新发明后端子集

子集算法有助于优化服务间连接利用率&#xff0c;降低资源使用。但随机或轮询子集算法在动态拓扑环境中会造成较高的连接扰动。本文介绍了谷歌在解决连接扰动方面所做的思考和实践&#xff0c;并介绍了当前最新的Rocksteadier子集算法。原文: Reinventing Backend Subsetting a…

面试题:怎么给详情页做性能优化的?

文章目录 一、背景二、接口优化方案总结1.批处理2.异步处理3.空间换时间4.预处理5.池化思想6.串行改并行7.索引8.避免大事务9.优化程序结构10.深分页问题11.SQL优化12.锁粒度避免过粗 三、最后 一、背景 针对老项目&#xff0c;去年做了许多降本增效的事情&#xff0c;其中发现…

03MyBatis完成CRUD

准备工作 ○ 创建module&#xff08;Maven的普通Java模块&#xff09;&#xff1a;mybatis-002-crud ○ pom.xml ■ 打包方式jar ■ 依赖&#xff1a; ● mybatis依赖 ● mysql驱动依赖 ● junit依赖 ● logback依赖 ○ mybatis-config.xml放在类的根路径下 ○ CarMapper.xml放…

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (二)

这个是继上一篇文章 “Elasticsearch&#xff1a;Serarch tutorial - 使用 Python 进行搜索 &#xff08;一&#xff09;” 的续篇。在今天的文章中&#xff0c;我们接着来完成如何进行分页及过滤。 分页 - pagination 应用程序处理大量结果通常是不切实际的。 因此&#xff0…

【ros笔记】urdf文件

urdf文件属于xml文件&#xff0c;他的标签有&#xff1a; <robot name"robot_name"><!-- 看的见摸的着刚体用link --><link name"base_link"><!-- 可视化部分 --><visual><!-- 几何形状 --><geometry><!-- b…

vue-springboot 音乐推荐系统 带歌词的音乐播放器系统设计与实现 7902c

少数民族音乐网站在流畅性&#xff0c;续航能力&#xff0c;等方方面面都有着很大的优势。这就意味着少数民族音乐网站的设计可以比其他系统更为出色的能力&#xff0c;可以更高效的完成最新的音乐信息、音乐资讯、在线交流等功能。 此系统设计主要采用的是JAVA语言来进行开发&…

基于SpringBoot的教学辅助系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

实战Flink Java api消费kafka实时数据落盘HDFS

文章目录 1 需求分析2 实验过程2.1 启动服务程序2.2 启动kafka生产 3 Java API 开发3.1 依赖3.2 代码部分 4 实验验证STEP1STEP2STEP3 5 时间窗口 1 需求分析 在Java api中&#xff0c;使用flink本地模式&#xff0c;消费kafka主题&#xff0c;并直接将数据存入hdfs中。 flin…

java火车查询管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web火车查询管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql…

深度学习工具-Jupyter Notebook使用

在本地编辑和运行代码 运行命令jupyter notebook。如果浏览器未自动打开&#xff0c;请打开http://localhost:8888 你可以通过单击网页上显示的文件夹来访问notebook文件。它们通常有后缀“.ipynb”。为了简洁起见&#xff0c;我们创建了一个临时的“test.ipynb”文件。单击后…

计算机网络(超级详细笔记)

使用教材计算机网络&#xff08;第8版&#xff09;&#xff08;谢希仁&#xff09; 第一章&#xff1a;概述 第二章&#xff1a;物理层 第三章&#xff1a;数据链路层 第四章&#xff1a;网络层 第五章&#xff1a;运输层 第六章&#xff1a;应用层 目…

Linux学习第50天:Linux块设备驱动实验(二):Linux三大驱动之一

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 三、使用请求队列实验 1.实验程序编写 使用开发板上的一段RAM来模拟一段块设备&#xff0c;也就是ramdisk. 机械硬盘 34 #define RAMDISK_SIZE (2 * 1024 * 10…

使用即时设计绘制原型设计方便吗?和Axure RP相比怎么样?

对于原型设计&#xff0c;APP 和 Web 都是一样的&#xff0c;因为产品原型是用来确定需求的工具。我们使用这种工具的目的是为了快速迭代&#xff0c;从而深入挖掘和筛选产品的需求。 绘制原型&#xff0c;最重要的原则是&#xff1a;快速、清晰&#xff01; Axure 工具的优缺…

2023APMCM亚太数学建模C题 - 中国新能源汽车的发展趋势(3)

六、问题三的模型建立和求解 6.1问题分析 问题3.收集数据&#xff0c;建立数学模型分析新能源电动汽车对全球传统能源汽车行业的影响。 本题要求建立模型分析新能源电动汽车对全球传统能源汽车行业的影响。由于数据集可能略大&#xff0c;而在处理复杂问题、大量特征和大规模…

spatialRF

官网&#xff1a;Easy Spatial Modeling with Random Forest • spatialRF (blasbenito.github.io) spatialRF是一种在考虑空间自相关的前提下&#xff0c;利用随机森林对空间数据进行回归并解释的R包。 数据要求 参数命名 data&#xff1a;训练集&#xff0c;data frame。 …

基于SpringBoot的房屋租赁管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

WorkPlus Meet打造高质量的视频会议体验,助力实时远程协作

在全球化的商业环境中&#xff0c;远程协作和在线会议成为了企业高效工作的关键。作为一款高质量的视频会议软件&#xff0c;WorkPlus Meet以其卓越的性能和创新的功能&#xff0c;成为企业实时远程协作的首选。 WorkPlus Meet打造了高质量的视频会议体验&#xff0c;为企业提供…