2023年高教社杯数学建模思路 - 案例:粒子群算法

文章目录

  • 1 什么是粒子群算法?
  • 2 举个例子
  • 3 还是一个例子
  • 算法流程
  • 算法实现
  • 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是粒子群算法?

粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
  
  粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。

在这里插入图片描述

2 举个例子

在这里插入图片描述
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。

在这里插入图片描述

现在左边比较深,因此右边的人会往左边移动一下小船

一直重复该过程,最后两个小船会相遇

在这里插入图片描述
得到一个局部的最优解
在这里插入图片描述将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)

在这里插入图片描述

p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置

在这里插入图片描述

下一个位置为上图所示由x,p,g共同决定了

在这里插入图片描述

种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。

3 还是一个例子

粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
在这里插入图片描述

小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
  1. 每只鸟随机找一个地方,评估这个地方的食物量。
  2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
  3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
  4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
  5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。

在这里插入图片描述

上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。

算法流程

在这里插入图片描述

算法实现

这里学长用python来给大家演示使用粒子群解函数最优解

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import random# 定义“粒子”类
class parti(object):def __init__(self, v, x):self.v = v                    # 粒子当前速度self.x = x                    # 粒子当前位置self.pbest = x                # 粒子历史最优位置class PSO(object):def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):self.interval = interval                                            # 给定状态空间 - 即待求解空间self.tab = tab.strip()                                              # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值self.iterMax = iterMax                                              # 迭代求解次数self.w = w                                                          # 惯性因子self.c1, self.c2 = c1, c2                                           # 学习因子self.v_max = (interval[1] - interval[0]) * 0.1                      # 设置最大迁移速度#####################################################################self.partis_list, self.gbest = self.initPartis(partisNum)                 # 完成粒子群的初始化,并提取群体历史最优位置self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list))    # 提取粒子群的种子状态 ###self.solve()                                                              # 完成主体的求解过程self.display()                                                            # 数据可视化展示def initPartis(self, partisNum):partis_list = list()for i in range(partisNum):v_seed = random.uniform(-self.v_max, self.v_max)x_seed = random.uniform(*self.interval)partis_list.append(parti(v_seed, x_seed))temp = 'find_' + self.tabif hasattr(self, temp):                                             # 采用反射方法提取对应的函数gbest = getattr(self, temp)(partis_list)else:exit('>>>tab标签传参有误:"min"|"max"<<<')return partis_list, gbestdef solve(self):for i in range(self.iterMax):for parti_c in self.partis_list:f1 = self.func(parti_c.x)# 更新粒子速度,并限制在最大迁移速度之内parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)if parti_c.v > self.v_max: parti_c.v = self.v_maxelif parti_c.v < -self.v_max: parti_c.v = -self.v_max# 更新粒子位置,并限制在待解空间之内if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:parti_c.x = parti_c.x + parti_c.velse:parti_c.x = parti_c.x - parti_c.vf2 = self.func(parti_c.x)getattr(self, 'deal_'+self.tab)(f1, f2, parti_c)             # 更新粒子历史最优位置与群体历史最优位置def func(self, x):                                                       # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef find_min(self, partis_list):                                         # 按状态函数最小值找到粒子群初始化的历史最优位置parti = min(partis_list, key=lambda parti: self.func(parti.pbest))return parti.pbestdef find_max(self, partis_list):parti = max(partis_list, key=lambda parti: self.func(parti.pbest))   # 按状态函数最大值找到粒子群初始化的历史最优位置return parti.pbestdef deal_min(self, f1, f2, parti_):if f2 < f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 < self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def deal_max(self, f1, f2, parti_):if f2 > f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 > self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def display(self):print('solution: {}'.format(self.gbest))plt.figure(figsize=(8, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')plt.xlabel('x')plt.ylabel('f(x)')plt.title('solution = {}'.format(self.gbest))plt.legend()plt.savefig('PSO.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':PSO([-9, 5], 'max')

效果
在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/60411.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈 Pytest+HttpRunner 如何展开接口测试!

软件测试有多种多样的方法和技术&#xff0c;可以从不同角度对它们进行分类。其中&#xff0c;根据软件生命周期&#xff0c;针对不同的测试对象与目标&#xff0c;可将测试过程分为 4 个阶段&#xff1a;单元测试、集成测试、系统测试和验收测试。本文着重介绍了如何借用 pyte…

Kafka核心原理第一弹——更新中

架构原理 一、高性能读写架构原理——顺序写零拷贝 首先了解两个专业术语&#xff0c;研究kafka这个东西&#xff0c;你必须得搞清楚这两个概念&#xff0c;吞吐量&#xff0c;延迟。 写数据请求发送给kafka一直到他处理成功&#xff0c;你认为写请求成功&#xff0c;假设是…

微信小程序修改数据,input不能实时回显

场景&#xff1a; 填写发票抬头&#xff0c;填写抬头公司时候&#xff0c;会根据用户输入的内容实时获取相关的公司信息&#xff0c;用户选择搜索出来的公司&#xff0c;这时候 setData,但是数据并没有回显&#xff0c;而是需要再需要点一下屏幕。 解决方案&#xff1a; 原来…

java基础-----第三篇

系列文章目录 文章目录 系列文章目录前言一、final二、String、StringBuffer、StringBuilder前言 一、final 最终的 修饰类:表示类不可被继承 修饰方法:表示方法不可被子类覆盖,但是可以重载 修饰变量:表示变量一旦被赋值就不可以更改它的值。 (1)修饰成员变量 如果fina…

lnmp架构-mysql1

1.MySQL数据库编译 make完之后是这样的 mysql 初始化 所有这种默认不在系统环境中的路径里 就这样加 这样就可以直接调用 不用输入路径调用 2.初始化 重置密码 3.mysql主从复制 配置master 配置slave 当master 端中还没有插入数据时 在server2 上配slave 此时master 还没进…

【混合时变参数系统参数估计算法】使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

微软 Turing Bletchley v3视觉语言模型更新:必应搜索图片更精准

据微软新闻稿透露&#xff0c;在推出第三代Turing Bletchley视觉语言模型后&#xff0c;微软计划逐步将其整合到Bing等相关产品中&#xff0c;以提供更出色的图像搜索体验。这款模型最初于2021年11月面世&#xff0c;并在2022年秋季开始邀请用户测试。 凭借用户的反馈和建议&am…

vue项目使用svg实现一个物体沿着线条实时运动;svg图像放大缩小;svg中的文字居中显示

效果如上 html部分 <svg width"500px" height"500px" viewBox"0 0 400 400"><!-- 绘制连线 --><template v-for"(point, index) in points"><line :x1"point.x" :y1"point.y" :x2"in…

【seaweedfs】3、f4: Facebook’s Warm BLOB Storage System 分布式对象存储的冷热数据

论文地址 Facebook的照片、视频和其他需要可靠存储和快速访问的二进制大型对象(BLOB)的语料库非常庞大&#xff0c;而且还在继续增长。随着BLOB占用空间的增加&#xff0c;将它们存储在我们传统的存储系统-- Haystack 中变得越来越低效。为了提高我们的存储效率(以Blob的有效复…

问题杂谈(三十七)远程调试linux中的Tomcat

前言 之前调试过Docker里面的java程序&#xff0c;但还没试过直接调试tomcat里面的java程序&#xff0c;今儿个来试试 步骤 Tomcat 修改catlina脚本&#xff1a;vi catlina.sh&#xff08;bin目录下&#xff09;找到下面这句&#xff0c;将"localhost:8000"改为”…

【单片机】有人 WH-LTE-7S1 4G cat1 模块,HTTPD模式,字符串传输,文件传输。GPRS模块连接服务器教程。

文章目录 1、配置模块为HTTPD模式 POST字符串传输2、配置模块为HTTPD模式 GET请求3、 上一篇文章&#xff1a;https://qq742971636.blog.csdn.net/article/details/132571592 在上一篇文章里&#xff0c;已经通过TCP 长链接进行服务器与Cat1 GPRS 模块进行双向通信。已经能够满…

程序与进程

一、程序是怎么被执行的 1.在程序中&#xff0c;由引导代码去调用程序中得main函数&#xff0c;而这个过程由链接器完成&#xff0c;链接器将引导代码链接到我们的应用程序构成可执行文件。 2.程序运行需要通过操作系统的加载器来实现&#xff0c;加载器是操作系统中的程序&a…

Java学数据结构(4)——散列表Hash table 散列函数 哈希冲突

目录 引出散列表Hash table关键字Key和散列函数(hash function)散列函数解决collision哈希冲突&#xff08;碰撞&#xff09;分离链接法(separate chaining)探测散列表(probing hash table)双散列(double hashing) Java标准库中的散列表总结 引出 1.散列表&#xff0c;key&…

ThinkPHP 集成 jwt 技术 token 验证

ThinkPHP 集成 jwt 技术 token 验证 一、思路流程二、安装 firebase/php-jwt三、封装token类四、创建中间件&#xff0c;检验Token校验时效性五、配置路由中间件六、写几个测试方法&#xff0c;通过postman去验证 一、思路流程 客户端使用用户名和密码请求登录服务端收到请求&…

论文阅读 FCOS: Fully Convolutional One-Stage Object Detection

文章目录 FCOS: Fully Convolutional One-Stage Object DetectionAbstract1. Introduction2. Related Work3. Our Approach3.1. Fully Convolutional One-Stage Object Detector3.2. Multi-level Prediction with FPN for FCOS3.3. Center-ness for FCOS 4. Experiments4.1. Ab…

字符串匹配的Rabin–Karp算法

leetcode-28 实现strStr() 更熟悉的字符串匹配算法可能是KMP算法, 但在Golang中,使用的是Rabin–Karp算法 一般中文译作 拉宾-卡普算法,由迈克尔拉宾与理查德卡普于1987年提出 “ 要在一段文本中找出单个模式串的一个匹配&#xff0c;此算法具有线性时间的平均复杂度&#xff0…

【LeetCode-中等题】230. 二叉搜索树中第K小的元素

文章目录 题目方法一&#xff1a;层序遍历 集合排序方法二&#xff1a;中序遍历&#xff08;栈 或者 递归 &#xff09;方法三&#xff08;方法二改进&#xff09;&#xff1a;中序遍历&#xff08;栈 &#xff09; 题目 该题最大的特点就是这个树是二叉树&#xff1a; 所以…

【java中的Set集合】HashSet、LinkedHashSet、TreeSet(最通俗易懂版!!)

目录 一、HashSet集合 1.HashSet集合的特点 2.HashSet常用方法 二、LinkedHashSet集合 LinkedHashSet集合的特点 三、TreeSet集合 1.TreeSet集合的特点 2.TreeSet的基本使用 四、HashSet、LinkedHashSet、TreeSet的使用场景 五、list和set集合的区别 一、HashSet集合 …

网页接口导入postman进行接口请求

postman版本&#xff1a;v10.17.4 一、拷贝接口信息 网页打开开发者工具-networkk&#xff0c;在网页上请求一次接口&#xff0c;鼠标指在接口上&#xff0c;点击鼠标右键-copy-copy as cURL(bash) 二、导入postman 打开postman&#xff0c;点击import-Raw text&#xff0c;…

YOLOv5、YOLOv7 注意力机制改进SEAM、MultiSEAM、TripletAttention

用于学习记录 文章目录 前言一、SEAM、MultiSEAM1.1 models/common.py1.2 models/yolo.py1.3 models/SEAM.yaml1.4 models/MultiSEAM.yaml1.5 SEAM 训练结果图1.6 MultiSEAM 训练结果图二、TripletAttention2.1 models/common.py2.2 models/yolo.py2.3 yolov7/cfg/training/Tri…