大学生搜题软件,未来可期吗?

作为一家专注于软件开发的公司《智创有术》,我们致力于为客户提供创新、高效和可靠的解决方案。通过多年的经验和专业知识,我们已经在行业内建立了良好的声誉,并赢得了客户的信任和支持。

支持各种源码,网站搭建,APP,小程序,小游戏所有开发!

我们的团队由一群充满激情和技术专长的专业人士组成,他们不断追求卓越,并始终保持对新技术的敏锐洞察力。我们深知每个项目都是独一无二的,因此我们采用个性化的方法来满足客户的需求,确保项目的成功实施。

在我们的全网营销中,我们将利用各种数字渠道和策略来提高品牌知名度、吸引潜在客户并促进销售增长。无论是通过搜索引擎优化(SEO)、社交媒体营销还是内容营销,我们都将努力为您提供最佳的网络营销解决方案。

现如今,“在线搜题”在中小学生当中已经不是稀奇事。“小猿搜题”和“作业帮”们作为最经典的在线学习工具之一,为中小学生们带来了极大的便利。

但与此同时,大学生们迟迟没能享受到“拍照搜题”的服务,市面上始终没能出现一款属于大学生的搜题软件,“在线搜题”在大学生用户这头出现了一片空白。

那么,适合大学生使用的搜题软件是什么样的?制作一款这样的软件需要解决什么问题?要用到什么技术?这样一款产品,在市面上会有市场吗?天天问的小伙伴们对此提出了一些点子,一起来看看吧。

天天问每周精选第217期:大学生搜题软件前景怎么样?需要什么技术?

文章内容部分来源于 @影. @汪仔只想旺自己这个崽 @Mark-ZXL @要你命3000 的精彩回答

一、大学生需要怎样的搜题软件?

要做一款大学生搜题软件,首先要明确一下,大学生需要的搜题软件是什么样的?

市面上传统的搜题软件,大家都很熟悉了,基本上以面向中小学生的内容为主。以其中比较具有代表性的产品小猿搜题,场景需求基本上保持相似的逻辑。它们高频使用场景都是“拍照搜题”,然后用题库中的数据满足搜题的内容需求。

由于中小学生的练习题使用的知识点重合度非常高,题目答案都趋向标准化,这种搜题模式基本能够满足中小学生和家长的搜题需求。小猿搜题、作业帮等产品也有了不断发展成熟的土壤。

和传统搜题软件面向的中小学生不同,大学生学习内容大大增加,内容从深度到广度都有了极高的提升。

大学生的课程被大致分为通识课和专业课:通识课即英语课、思修课等,所有大学生都需要修读,普适性强,也相对标准化;而专业课内容则有很强的专业性,题目发散性往往非常强,需要的知识也更多,更具针对性。因此,大学生对搜题软件的内容需求比中小学生复杂得多。

根据大学课程知识体系的特点,大学生搜题需要的内容主要分为下面两种:

  1. 标准化内容:诸如四六级、思修、国考等作为公共必修内容,而且有固定答案的知识;还有知识水平要求更高的高数、物理、编程题目,针对某些专业的特定知识等
  2. 非标准化内容:比如专业课思考题、竞赛题目等开放性强或个性化、发散性强的内容

大学生的搜题需求也因此具备以下特点:

  1. 知识面要求广
  2. 专业水平要求高
  3. 个性化
  4. 发散性强

做一款大学生的搜题软件,需要具备的核心内容就需要满足这些需求特点。那么,满足这些需求的软件是什么样的?需要具备什么样的技术?天天问的小伙伴对此给出了他们的解决方案。

二、怎么满足大学生的搜题需求?

前面分析了大学生对搜题软件的个性化需求,假设真的要制作一个面向大学生的搜题产品,它需要解决两个方面的问题:

  1. 一是核心业务场景——也就是用户搜题的流程中的问题;
  2. 二是题库的建立和扩充——即满足前文提到的内容需要。

1.  完善搜题流程

整体来看,大学生搜题软件的搜题逻辑与市面上已有的搜题软件大致相同,可以用文字输入或图片上传的方法进行搜题。天天问小伙伴@影. 参考市面上现有的搜题软件,给出了一个可供参考的流程:

1.上传图片。

2.预处理图片:即对图像的模糊、旋转、颜色反转等问题进行处理。

3.切分:对图片中的汉字、英文、符合加以区别。

经过“二值化”之后整个图像会呈现出明显的黑白效果,这样一来,图像就变得简单了,而且数据量也减小了,还能凸显出感兴趣的目标的轮廓。接着自然也就可以把单个字符切分出来了。

4.识别:把字符切分出来之后,软件还是“认不出”这个字符是什么的,所以接下来还要“识别”这些字符。这时就需要光学字符识别技术(OCR)和深度学习(Deep Learning)技术上场了。

在“识别”这个过程中,PhotoMath主要使用了OCR技术,而小猿搜题则主要使用了Deep Learning技术。Deep Learning是机器学习其中的一个分支,其动机在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,例如图像,声音和文本。

5.纠错:利用语言模型进行纠错。

不论是OCR技术还是深度学习技术都不能保证100%识别正确,所以中间可能还需要插入一个纠错过程,像“1和l”、“好图所示和如图所示”、“入和人”这些形式非常相近的字符机器也很容易读错。通过Deep Learning、标注数据、优化算法等对图中文字进一步识别。理工科的大学内容中常常包含难以识别的专业符号,这些东西也可以依赖OCR技术解决。

6.搜索:经过上述这些步骤,将题目转化成文字,然后在题库中进行搜索,最终返回题目答案以及解析。

另外,这个过程中还使用了以图搜图的技术加以补充。以图搜图的方法就是把用户拍摄的图片和已有的图片题库做匹配。这和我们平常通过上传图片的方式在搜索引擎中找与之相似的图片其实非常类似,只是在图片匹配的过程中有“计算机视觉+机器学习”和“深度学习”这两种方式可选。

2.  建立面向大学生的题库

作为一个搜题软件,题库内容是其给用户提供服务的过程中非常重要的一部分——用户产生解题需求后,需要在题库内搜索解题方案,系统通过与数据库匹配为用户提供最贴合的解决方案。

上文对大学生搜题需求的分析中,我们已经将大学生所需的题目内容进行了简单的分析,我们需要一个怎样的题库?

信息量大,知识面广,专业水平高,逻辑框架要与当前国内高等教育各专业教学体系框架高度统一,题库更新的频率要足够快。

接下来就要可以通过下面的方法搭建一个题库,能分别满足这些内容需求。

1)标准化内容

标准化内容中,一部分普适性非常强。例如四六级、国考,大学生课本内容等,网络上的题目信息并不难找,甚至市面上已经有人整理过相应的题库,可以直接购买使用这一类内容。

而另一部分,针对专业水平要求更高的内容,天天问一位小伙伴提出一个建议:用户来自校园,解决方案也可以来自校园。

可以考虑与有能力的综合类大学进行校企合作。通过支付一定的报酬,获取大学内各个学科的教学框架,知识内容等,同时也可以在高校内招募答题人。

此外,还可以以学科为单位与高校进行合作,根据鼓励用户根据相应的学科或课程分类上传题库,维持题库中内容的扩充。

借此,企业能够弥补专业水平上的短板,丰富内容生态。

2)非标准化内容

针对更加个性化的,专业性针对性较高的题目,单纯题库搜索和匹配已经无法满足要求,这时需要搭建平台在线答题的功能来进行补充:学生提出问题,由其他用户或者老师在上面进行解答。平台可以给出相应的奖励机制,例如在固定时间节点内答题可以领佣金,鼓励用户回答问题。

同时,针对发散性较强的问题,大学生往往更需要资料与信息的参考,而非直接给出的答案。因此平台也可以鼓励用户上传课件等内容,收录进题库的数据中。

三、大学生搜题软件值得做吗?

经过前面的分析,我们很容易观察到,大学生搜题软件的搭建与运营都有很大难度。同时,由于大学生课程知识的复杂性,大学生做题更需要参考性内容,例如相关的论文和科普性信息,需要“搜题”直接提取答案的场景似乎并不多。

因此,天天问的问答页面下,小伙伴们对大学生搜题软件的态度大多并不乐观。主要原因有两个:

  1. 大学生的搜题需求少,使用频率低
  2. 大学生搜题需求过于复杂,难以实现

正是因为这些难题,至今市面上仍然没能产出一个相对成熟的大学生搜题产品,由于其投入大,变现产出又显然比较慢,一款试图作用于大学生所有搜题需求的搜题软件发展前景并不好。但问答讨论中,天天问小伙伴还给出了一些方向,可以在大学生搜题的领域进行探索:

1.  针对覆盖面广的标准化知识形成题库

前面提到过,大学通识课内容中有相当大一部分高度标准化的知识,还有语言考试、教资、国考等考试内容也高度标准化,已有的大学生搜题APP如学小易,就专门列出了大学生常用课本的习题答案。

还可以针对其中某一个领域发力,形成该领域的题库。专业化内容多了,或者形成该领域的内容生态,就可以推出知识付费来变现。

市面上已经有不少具有类似搜题功能的产品,往往是相应领域的知识类APP,利用其资源库做出了类似题库、学习平台的功能,可供参考的案例不少。比如针对英语四六级考试的平台粉笔四六级,它的刷题页面就带有“对答案”等搜题功能。

2.  以小程序为载体试运营

以微信为流量入口进行试运营,可以减少前期投入的成本,运营难度也相对较低,可以利用小程序进行尝试。

面向大学生搜题的小程序其实已有不少,在微信搜索“军事理论”等大学基本通识课,马上能搜到各种网课答案搜题小程序。

针对一些个性化但有固定标准答案的内容,比如大学自行开设的网课,也有学生自发组织上传的题库与答案,只需要简单的小程序甚至自动回复功能就能满足需要,不失为一个尝试的好方法。

总结下来,大学生搜题软件整体来看可能吃力不讨好,但细分下还有许多值得做的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/601556.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字孪生在增强现实(AR)中的应用

数字孪生在增强现实(Augmented Reality,AR)中的应用可以提供更丰富、交互性更强的现实世界增强体验。以下是数字孪生在AR中的一些应用,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司&#xff…

视频剪辑实战:如何批量嵌套合并视频,提高剪辑效率必备技巧

在视频剪辑工作中,经常要处理大量的视频片段。要提高工作效率,批量嵌套合并视频成为了一项必备技巧。现在一起看看云炫AI智剪如何使用一些实用的技巧,快速、准确地完成批量嵌套合并视频的任务。 合并后的视频截图,由两段不同片段组…

【STM32】STM32学习笔记-DMA直接存储器存储(23)

00. 目录 文章目录 00. 目录01. DMA简介02. DMA主要特性03. 存储器映像04. DMA框图05. DMA基本结构06. DMA请求07. 数据宽度与对齐08. 数据转运DMA09. ADC扫描模式DMA10. 附录 01. DMA简介 小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx、STM32F102xx和STM32F…

解决Gitlab Prometheus导致的磁盘空间不足问题

解决Gitlab Prometheus导致的磁盘空间不足问题 用docker搭建了一个gitlab服务,已经建立了多个项目上传,但是突然有一天就503了。 df -TH查看系统盘,发现已经Used 100%爆满了。。。 💡Tips:/dev/vda1目录是系统盘目录。…

AntV L7 实现地图功能(高德)

一、 使用前的准备 首先,注册开发者账号,成为高德开放平台开发者 登陆之后,在进入「应用管理」 页面「创建新应用」 为应用添加 Key,「服务平台」一项请选择「 Web 端 ( JSAPI ) 」 二、安装依赖 // 安装L7 依赖 npm install…

2024年【危险化学品生产单位主要负责人】复审模拟考试及危险化学品生产单位主要负责人作业模拟考试

题库来源:安全生产模拟考试一点通公众号小程序 2024年危险化学品生产单位主要负责人复审模拟考试为正在备考危险化学品生产单位主要负责人操作证的学员准备的理论考试专题,每个月更新的危险化学品生产单位主要负责人作业模拟考试祝您顺利通过危险化学品…

深度学习 Day23——J3DenseNet算法实战与解析

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 文章目录 前言1 我的环境2 pytorch实现DenseNet算法2.1 前期准备2.1.1 引入库2.1.2 设…

flutter 使用adb 同时连接 多个模拟器

MUMU模拟器 MuMu模拟器官网_安卓12模拟器_网易手游模拟器 传统只需要 连接一个 默认命令是 默认端口是7555 adb connect 127.0.0.1:7555 但是需要同时连接调试多个模拟器的时候 就需要连接多个 这里可以使用自带的多开 多开后 使用 1 是对应多开的序号 这样就可以查看对…

我是谁 whoami

文章目录 我是谁 whoami更多信息 我是谁 whoami 我知道你是谁,但我不知道我是谁,此时whoami可以帮助你,哈哈。 whoami将打印当前用户的名字。与id -un类似。 官方定义为: whoami - print effective userid 用法为: …

Redis基础学习一

1. Redis 入门 1.1. Redis 诞生历程 1.1.1.从一个故事开始 08 年的时候有一个意大利西西里岛的小伙子,笔名 antirez(http://invece.org/),创建了一个访客信息网站 LLOOGG.COM。有的时候我们需要知道网站的访问情况,…

高级数据结构:并查集

文章目录 1.什么是并查集:2、并查集的基本结构3.现实问题和代码实现链接4.代码实现 1.什么是并查集: 对于一个集合S{a1,a2,……an-1,an},这是可以对集合S进一步划分:S1,S2,……,Sm-1&#xff0…

阿里云迁移AWS视频点播技术攻坚

文章目录 🐷 背景🦥 简述🐥 Aws服务🦜 AWS CloudFormation🐞 问题🐉 落地方案🦉 Aws vs Aliyun🍄 避坑指南 🐷 背景 由于AWS整体成本略低于阿里云,公司决定将…

R 批量对多个变量进行单因素方差分析 批量计算均值±标准差

多个变量批量进行单因素方差 R实现 文章目录 一、批量生成均值标准差 P值二、添加协变量单因素方差分析,生成校正P值三、在分层情况下进行单因素方差分析四、添加协变量和交互项的单因素方差分析,生成交互项的P值 一、批量生成均值标准差 P值 数据结构如…

Android AAudio

文章目录 基本概念启用流程基本流程HAL层对接数据流计时模型调试 基本概念 AAudio 是 Android 8.0 版本中引入的一种音频 API。 AAudio 提供了一个低延迟数据路径。在 EXCLUSIVE 模式下,使用该功能可将客户端应用代码直接写入与 ALSA 驱动程序共享的内存映射缓冲区…

数字图像处理(图像灰度变换、图像直方图及均衡、图像中值滤波、图像空域锐化增强、图像频域滤波)

数字图像处理(图像灰度变换、图像直方图及均衡、图像中值滤波、图像空域锐化增强、图像频域滤波) 目录 1 图像灰度变换 1.1 灰度线性变换 1.2 图像二值化 1.3 负象变换 1.4 灰度非线性变换 1.5 程序设计流程图 2 图像直方图及均衡 2.1 直方图 2…

Linux 服务器磁盘满了怎么办?详细清理大文件指南

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

Agilent安捷伦E4407B频谱分析仪26.5GHz

E4407B是安捷伦ESA-E系列频谱分析仪,它是一款能够适应未来需要的中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。其灵活的平台设计使得研发、制造和现场服务工程师能够自定义产品&…

特征工程筛选重要变量

特征筛选主要分为3个方法:过滤法、嵌入法(经典的一些树模型比如xgboost)、包裹法(经典的RFECV,RFE递归特征消除法) 过滤法更快速,但更粗糙。 包装法和嵌入法更精确,比较适合具体到算…

【代码随想录】刷题笔记Day46

前言 刚考完自辩,Chat回答举例什么的真方便。早上做组会PPT去了,火速来刷题! 139. 单词拆分 - 力扣(LeetCode) 单词是物品,字符串s是背包,单词能否组成字符串s,就是问物品能不能把…

SpringBoot学习(五)-Spring Security配置与应用

注:此为笔者学习狂神说SpringBoot的笔记,其中包含个人的笔记和理解,仅做学习笔记之用,更多详细资讯请出门左拐B站:狂神说!!! Spring Security Spring Security是一个基于Java的开源框架,用于在Java应用程…