《动手学深度学习》学习笔记 第5章 深度学习计算

本系列为《动手学深度学习》学习笔记
书籍链接:动手学深度学习

笔记是从第四章开始,前面三章为基础知道,有需要的可以自己去看看

关于本系列笔记: 书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺

5. 深度学习计算

5.1 层和块

  图5.1.1: 多个层被组合成块,形成更大的模型
在这里插入图片描述

  下面的代码生成一个网络:具有256个单元和ReLU激活函数的全连接隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接 输出层。

import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)

  简而言 之,nn.Sequential定义了一种特殊的Module,即在PyTorch中表示一个块的类,它维护了一个由Module组成 的有序列表。

  这个前 向传播函数非常简单:它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

5.1.1 自定义块

  从零开始编写一个块:它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一 个10维输出层

class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256) # 隐藏层self.out = nn.Linear(256, 10) # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
  • 首先, 我们定制的__init__函数通过super().init()调用父类的__init__函数(省去了重复编写模版代码的痛苦。)
  • 然后,我们实例化两个全连接层,分别为self.hidden和self.out。
  • 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化,系统将自动生成这些。

5.1.2 顺序块

  看看Sequential类是如何工作的?
  为了构建我们自己的简化的MySequential,我们只需要定义两个关键函数:

  1. 将块逐个追加到列表中的函数;
  2. 前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
class MySequential(nn.Module):def __init__(self, *args):super().__init__()for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = moduledef forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return X
  • __init__函数将每个模块逐个添加到有序字典_modules中。

为什么每个Module都有一 个_modules属性?
为什么我们使用它而不是自己定义一个Python列表?
.
简而言之,_modules的主要优点是:在模块的参数初始化过程中,系统知道在_modules字典中查找需要初始化参数的子块。

5.1.3 在前向传播函数中执行代码

  有时我们可能希望合并 既不是上一层的结果也不是可更新参数的项,我们称之为常数参数(constant parameter)

  例如,我们需要一个计算函数 f ( x , w ) = c ⋅ w ⊤ x f(x, w) = c · w^{⊤}x f(x,w)=cwx的层,其中x是输入, w w w是参数, c c c是某个在优化过程中没有更新的指定常量。因此我们实现了一个FixedHiddenMLP类,如下所示:

class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X /= 2return X.sum()

  其中权重(self.rand_weight)在实例化时被随机初始化,之后为常量。这个权重不是一个模型参数,因此它不会被反向传播更新。

5.2 参数管理

  在选择了架构并设置了超参数后,我们就进入了训练阶段。

  • 此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。
  • 此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。

本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

5.2.1 参数访问

  从已有模型中访问参数。当通过Sequential类定义模型时,可以通过索引来访问模型的任意层

  如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())OrderedDict([('weight', tensor([[-0.0427, -0.2939, -0.1894, 0.0220, -0.1709, -0.1522, -0.0334, -0.2263]])), ('bias', tensor([0.0887]))])

输出的结果:

  • 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。
  • 两者都存储为单精度浮点数(float32)。

注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

目标参数

  访问底层的数值:从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

  参数是复合的对象,包含值、梯度和额外信息。 除了值之外,我们还可以访问每个参数的梯度。(在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。)

一次性访问所有参数

  当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)
时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来
比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
# ('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))print(*[(name, param.shape) for name, param in net.named_parameters()])
#('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8]))
#('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

这为我们提供了另一种访问网络参数的方式,如下所示。

net.state_dict()['2.bias'].data
# tensor([0.0887])

从嵌套块收集参数

  如果将多个块相互嵌套,参数命名约定是如何工作的?

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
print(rgnet)
Sequential(
(0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))
(1): Linear(in_features=4, out_features=1, bias=True))
rgnet[0][1][0].bias.data
# tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573, 0.3546, -0.2141, -0.2483])

5.2.2 参数初始化

  默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算
出的。

  PyTorch的nn.init模块提供了多种预置初始化方法:

内置初始化

  • 例1:将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
  • 例2:将所有参数初始化给定的常数,比如初始化为1。
def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)net.apply(init_constant)net[0].weight.data[0], net[0].bias.data[0]
  • 例3:使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

5.2.3 参数绑定

  有时希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

  这个例子表明第三个和第五个神经网络层的参数是绑定的(实际上是同一个对象)。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。

当参数绑定时,梯度会发生什么情况?
答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

5.3 延后初始化

到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 定义了网络架构,但没有指定输入维度。
  • 添加层时没有指定前一层的输出维度。
  • 在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

深度学习框架无法判断网络的输入维度是什么。这里的诀窍是框架的延后初始化(defers initialization),即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

5.3.1 实例化网络

  首先,实例化一个多层感知机。

  此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。因此,框架尚未初始化任何参数。

  接下来让将数据通过网络,最终使框架初始化参数。

  一旦知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。

  注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。等到知道了所有的参数形状,框架就可以初始化参数。

5.4 自定义层

  深度学习成功背后的一个因素是神经网络的灵活性:可以用创造性的方式组合不同的层,从而设计出适用于各种任务的架构。

5.4.1 不带参数的层

  首先,构造一个没有任何参数的自定义层。

  下面的CenteredLayer类要从其输入中减去均值。要构建它,我们只需继承基础层类并实现前向传播功能。

import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()def forward(self, X):return X - X.mean()

验证:

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
# tensor([-2., -1., 0., 1., 2.])
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()
# tensor(7.4506e-09, grad_fn=<MeanBackward0>)

5.4.2 带参数的层

  实现自定义版本的全连接层。该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。

  在此实现中,使用修正线性单元作为激活函数。该层需要输入参数:in_units和units,分别表示输入数和输出数。

class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)

  实例化MyLinear类并访问其模型参数。

linear = MyLinear(5, 3)
linear.weight
#Parameter containing:
#tensor([[ 0.1775, -1.4539, 0.3972],#[-0.1339, 0.5273, 1.3041],#[-0.3327, -0.2337, -0.6334],#[ 1.2076, -0.3937, 0.6851],#[-0.4716, 0.0894, -0.9195]], requires_grad=True)

5.5 读写文件

5.5.1 加载和保存张量

import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file') # 保存x2 = torch.load('x-file') # 读取

以写入或读取从字符串映射到张量的字典。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

5.5.2 加载和保存模型参数

class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

将模型的参数存储在一个叫做“mlp.params”的文件中。

torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。

这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

5.6 GPU

  使用nvidia-smi命令查看显卡信息。

!nvidia-smi

5.6.1 计算设备

  指定用于存储和计算的设备,如CPU和GPU。默认情况下,张量是在内存中创建的,然后使用CPU计算它。
应该注意的是:

  • cpu设备意味着所有物理CPU和内存,这意味着PyTorch的计算将尝试使用所有CPU核心。
  • 然而,gpu设备只代表一个卡和相应的显存。
  • 如果有多个GPU,我们使用torch.device(f’cuda:{i}') 来表示第i块GPU(i从0开始)。
  • 另外,cuda:0和cuda是等价的。
import torch
from torch import nn
torch.device('cpu')
torch.device('cuda')
torch.device('cuda:1')

查询可用gpu的数量。

torch.cuda.device_count()

在不存在所需所有GPU的情况下运行代码。

def try_gpu(i=0): #@save"""如果存在,则返回gpu(i),否则返回cpu()"""if torch.cuda.device_count() >= i + 1:return torch.device(f'cuda:{i}')return torch.device('cpu')def try_all_gpus(): #@save"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""devices = [torch.device(f'cuda:{i}')for i in range(torch.cuda.device_count())]return devices if devices else [torch.device('cpu')]
try_gpu()try_gpu(10)try_all_gpus()

5.6.2 张量与GPU

  查询张量所在的设备。(默认情况下,张量是在CPU上创建的。)

x = torch.tensor([1, 2, 3])
x.device
# device(type='cpu')
  • 需要注意的是,无论何时我们要对多个项进行操作,它们都必须在同一个设备上。

  例如,如果我们对两个张量求和,我们需要确保两个张量都位于同一个设备上,否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

存储在GPU上

  有几种方法可以在GPU上存储张量。例如,我们可以在创建张量时指定存储设备。

  在第一个gpu上创建张量变量X。(在GPU上创建的张量只消耗这个GPU的显存。我们可以使用nvidia-smi命令查看显存使用情况。一般来说,需要确保不创建超过GPU显存限制的数据。)

X = torch.ones(2, 3, device=try_gpu())
X
# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:0')

假设至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。

Y = torch.rand(2, 3, device=try_gpu(1))
Y
# tensor([[0.4860, 0.1285, 0.0440],[0.9743, 0.4159, 0.9979]], device='cuda:1')

复制

  如果我们要计算X + Y,我们需要决定在哪里执行这个操作。例如,如下图所示,不要简单地X加上Y,这会导致异常,运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败
  由于Y位于第二个GPU上,所以我们需要将X移到那里,然后才能执行相加运算。
在这里插入图片描述

Z = X.cuda(1)
print(X)
print(Z)# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:0')
# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:1')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/599384.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring学习 Spring概述

1.1.Spring介绍 ​ Spring是轻量级Java EE应用开源框架&#xff08;官网&#xff1a; http://spring.io/ &#xff09;&#xff0c;它由Rod Johnson创为了解决企业级编程开发的复杂性而创建 1.2.简化应用开发体现在哪些方面&#xff1f; IOC 解决传统Web开发中硬编码所造成的…

python中collections.abc.Mapping 和collections.Mapping的区别

文章目录 在 Python 中&#xff0c;collections.abc.Mapping 和 collections.Mapping 都是用于表示映射类型&#xff08;即键值对的集合&#xff0c;例如字典&#xff09;的抽象基类。它们的区别在于它们的来源和使用方式。 collections.abc.Mapping 是 collections.abc 模块中…

1月5日代码随想录完全二叉树的节点个数

222.完全二叉树的节点个数 给你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的节点都集中在…

即时设计:轻松实现设计稿动画,打造独具魅力的GIF作品

制作动画 随着动画设计越来越受欢迎&#xff0c;设计师们需要一款强大的工具&#xff0c;以便轻松控制设计稿元素的属性&#xff0c;实现动画效果。今天&#xff0c;我们向您推荐一款具备帧动画功能的设计工具&#xff0c;它可以让您轻松调整元素的宽高、相对位置等属性&#x…

Spring AI 指南

近年来&#xff0c;人工智能技术的迅猛发展改变了我们对科技的看法&#xff0c;并在各个领域引发了巨大的变革。每个人都希望在自己的项目上能够使用人工智能。Spring 框架提供了一个名为 “Spring AI” 的项目&#xff0c;Spring AI 项目旨在简化包含人工智能功能的应用程序的…

Matlab绘制动态心形线

1. 代码 for alpha0:0.1:30 x-1.8:0.001:1.8; y(x.^2).^(1/3)0.9*(3.3-x.^2).^(1/2).*sin(alpha*pi*x); plot(x,y,r-,LineWidth,1.2); set(gca,YGrid,on); axis([-3,3,-2,4]); text(-2,3.35,$f(x)x^{\frac{2}{3}}0.9(3.3-x^2)^{\frac{1}{2}}sin(\alpha\pi x)$,Interpreter,lat…

Geotrust DV通配符证书保护域名数量

Geotrust是一家知名的SSL证书提供商&#xff0c;旗下有多种类型的SSL数字证书&#xff0c;保护网站数据在传输过程中的安全性和完整性&#xff0c;帮助用户确认其网站的安全。通配符SSL证书是Geotrust颁发的一种可以同时保护多个域名站点的SSL证书。今天就随SSL盾小编了解Geotr…

Toshiba 数字隔离器助力工业应用实现稳定的高速隔离数据传输

隔离器件是将输入信号进行转换并输出&#xff0c;以实现输入、输出两端电气隔离的一种安规器件。电气隔离能够保证强电电路和弱电电路之间信号传输的安全性&#xff0c;如果没有进行电气隔离&#xff0c;一旦发生故障&#xff0c;强电电路的电流将直接流到弱电电路&#xff0c;…

啊哈c语言——逻辑挑战8:验证哥德巴赫猜想

上面这封书信是普鲁士数学家哥德巴赫在1742年6月7日写给瑞士数学家欧拉的&#xff0c;哥德巴赫在书信中提出了“任一大于2的整数都可以写成3个质数之和”的猜想。当时&#xff0c;哥德巴赫遵照的是“1也是素数”的约定。现今&#xff0c;数学界已经不使用这个约定了。哥德巴赫原…

Spring Boot 整合 Knife4j(快速上手)

关于 Knife4j 官方文档&#xff1a;https://doc.xiaominfo.com/ Knife4j是一个基于Swagger的API文档生成工具&#xff0c;它提供了一种方便的方式来为Spring Boot项目生成在线API文档。Knife4j的特点包括&#xff1a; 自动化生成&#xff1a;通过Swagger注解&#xff0c;Kn…

凸优化 3:最优化方法

凸优化 3&#xff1a;最优化方法 最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降 二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别 拟牛顿法DFP、BFGS/L-BFGS 数值优化算法坐标下降法SMO算法 基于导数的函数优化解…

FCN学习-----第一课

语义分割中的全卷积网络 CVPR IEEE国际计算机视觉与模式识别会议 PAMI IEEE模式分析与机器智能汇刊 需要会的知识点&#xff1a; 神经网络&#xff1a;前向传播和反向传播 卷积神经网络&#xff1a;CNN&#xff0c;卷积&#xff0c;池化&#xff0c;上采样 分类网络&#xff1a…

杨中科 ASP.NETCore Rest

什么是Rest RPC 1、Web API两种风格: 面向过程(RPC) 、面向REST (REST) 2、RPC:“控制器/操作方法“的形式把服务器端的代码当成方法去调用。把HTTP当成传输数据的通道&#xff0c;不关心HTTP谓词。通过QueryString请求报文体给服务器传递数据。状态码。比如/Persons/GetAll…

【LeetCode】608. 树节点

表&#xff1a;Tree ------------------- | Column Name | Type | ------------------- | id | int | | p_id | int | ------------------- id 是该表中具有唯一值的列。 该表的每行包含树中节点的 id 及其父节点的 id 信息。 给定的结构总是一个有效的树。…

stm32学习笔记:TIM-输出比较

四部分讲解内容&#xff0c;本文是第二部分 输出比较主要用于PWM波形的控制电机&#xff08;驱动电机的必要条件&#xff09; 1、定时器基本定时&#xff0c;定一个时间&#xff0c;然后让定时器每隔一段时间产生一个中断&#xff0c;来实现每隔一个固定时间执行一段程序的目…

linux磁盘管理实验1

1.在安装好的linux系统中新加一块硬盘&#xff0c;将硬盘分成2个主分区&#xff0c;和2个逻辑分区&#xff0c;将其中一个逻辑分区设置成vfat&#xff08;FAT32&#xff09;分区&#xff0c;并实现开机自动挂载所有分区。 答&#xff1a;添加一个硬盘为sdb 分成2个主分区&#…

Flink电商实时数仓项目部署上线

Flink实时数仓部署 将common作为一个自定义的依赖部署到maven中使用maven将各个子模块打包可以使用FLink框架进行jar包的提交运行。 StreamPark 一个易于使用的流处理应用开发框架和一站式流处理操作平台和管理流应用。它提供了Flink和Spark编写流的脚手架。 Core:可以使用…

解读 $mash 通证 “Fair Launch” 规则(Staking 玩法解读篇)

Solmash 是 Solana 生态中由社区主导的铭文资产 LaunchPad 平台&#xff0c;该平台旨在为 Solana 原生铭文项目&#xff0c;以及通过其合作伙伴 SoBit 跨链桥桥接到 Solana 的 Bitcoin 生态铭文项目提供更广泛的启动机会。有了 Solmash&#xff0c;将会有更多的 Solana 生态的铭…

项目整合积木报表-设计页面

项目整合积木报表-设计页面 <template><div><iframe id"dome" :srcsrc ></iframe></div> </template><script>export default {data(){return{src:configSrc.src"/jmreport/view/836138868821839872"}}} </…

【C语言】函数

函数是什么&#xff1f; “函数”是我们早些年在学习数学的过程中常见的概念&#xff0c;简单回顾一下&#xff1a;比如下图中&#xff0c;你给函数 f(x)2*x3 一个具体的x,这个函数通过一系列的计算来返回给你一个结果(图示如下)。 这就是数学中函数的基本过程和作用。但是你…