逻辑回归简单案例分析--鸢尾花数据集

文章目录

    • 1. IRIS数据集介绍
    • 2. 具体步骤
      • 2.1 手动将数据转化为numpy矩阵
        • 2.1.1 从csv文件数据构建Numpy数据
        • 2.1.2 模型的搭建与训练
        • 2.1.3 分类器评估
        • 2.1.4 分类器的分类报告总结
        • 2.1.5 用交叉验证(Cross Validation)来验证分类器性能
        • 2.1.6 完整代码:
      • 2.2 使用sklearn内置的iris数据集(多分类)
        • 2.2.1 导入数据集
        • 2.2.2 划分训练集和测试集
        • 2.2.3 定义逻辑回归模型并训练
        • 2.2.5 用训练好的模型在训练集和测试集上做预测
        • 2.2.6 对预测结果进行可视化

1. IRIS数据集介绍

Iris也称鸢尾花卉数据集,是常用的分类实验数据集,由R.A. Fisher于1936年收集整理的。其中包含3种植物种类,分别是山鸢尾(setosa)变色鸢尾(versicolor)和维吉尼亚鸢尾(virginica),每类50个样本,共150个样本。

该数据集包含4个特征变量,1个类别变量。iris每个样本都包含了4个特征:花萼长度,花萼宽度,花瓣长度,花瓣宽度,以及1个类别变量(label)。我们需要建立一个分类器,分类器可以通过这4个特征来预测鸢尾花卉种类是属于山鸢尾,变色鸢尾还是维吉尼亚鸢尾。其中有一个类别是线性可分的,其余两个类别线性不可分,这在最后的分类结果绘制图中可观察到。

变量名变量解释数据类型
sepal_length花萼长度(单位cm)numeric
sepal_width花萼宽度(单位cm)numeric
petal_length花瓣长度(单位cm)numeric
petal_width花瓣长度(单位cm)categorical

2. 具体步骤

Step1:数据集预览

df=pd.read_csv('./data/iris.data.csv',header=0)
print(df.head())

image-20231221205143932

2.1 手动将数据转化为numpy矩阵

2.1.1 从csv文件数据构建Numpy数据

Step 1:构造映射函数iris_type。因为实际数据中,label并不都是便于学习分类的数字型,而是string类型。

Step 2:对于文本类的label, 将label列的所有内容都转变成映射函数的输出,存成新的dataframe
Step 3:将Step2的结果转换成numpy矩阵
Step 4:划分训练集与测试集

def iris_type(s):class_label={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}return class_label[s]
df=pd.read_csv('./data/iris.data.csv',header=0)
#2.将第4列内容映射至iris_type函数定义的内容
df['Species']=df['Species'].apply(iris_type)
print(df.head())
#3.将df解析到numpy_arrat
data=np.array(df)
# print(data[:2])#4.将原始数据集分为测试集合和验证集合
# 用np.split按列(axis=1)进行分割
# (4,):分割位置,前4列作为x的数据,第4列之后都是y的数据
x,y=np.split(data,(4,),axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.7,random_state=0)
2.1.2 模型的搭建与训练
  • Pipeline(steps)

    利用sklearn提供的管道机制

    Pipeline

    来实现对全部步骤的流式化封装与管理。

    • 第一个环节:可以先进行 数据标准化 StandardScaler()
    • 中间环节:可以加上 PCA降维处理 取2个重要特征
    • 最终环节:逻辑回归分类器
pip_LR=Pipeline([('sc',StandardScaler()),('pca',PCA(n_components=2)),('clf_lr',LogisticRegression(random_state=1))])#开始训练
pip_LR.fit(x_train,y_train.ravel())#显示当前管道的配置和参数设置,它并没有直接运行或产生实际的影响,只展示了机器学习管道的配置
Pipeline(memory=None,steps=[('sc', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,svd_solver='auto', tol=0.0, whiten=False)), ('clf_lr', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=1, solver='liblinear', tol=0.0001,verbose=0, warm_start=False))])
2.1.3 分类器评估
print("训练准确率:%0.2f"%pip_LR.score(x_train,y_train))print("测试准确率:%0.2f"%pip_LR.score(x_test,y_test))y_hat=pip_LR.predict(x_test)
accuracy=metrics.accuracy_score(y_test,y_hat)
print("逻辑回归分类器的准确率:%0.2f" % accuracy)
2.1.4 分类器的分类报告总结
  • 精确度(Precision):指的是在所有模型预测为某一类别的样本中,真正属于该类别的比例。计算方式为该类别的 True Positives / (True Positives + False Positives)。
  • 召回率(Recall):指的是在所有实际属于某一类别的样本中,被模型正确预测为该类别的比例。计算方式为该类别的 True Positives / (True Positives + False Negatives)
  • F1 Score:是精确度和召回率的调和平均数,综合考虑了两者的性能。计算方式为 2 ∗ P r e c s i o n ∗ R e c a l l P r e c i s i o n + R e c a l l 2*\frac{Precsion*Recall}{Precision+Recall} 2Precision+RecallPrecsionRecall
  • support:指的是属于该类别的样本数。
  • accuracy(准确度):指的是模型在所有类别上正确预测的比例。计算方式为 Sum of True PositivesTotal SamplesTotal SamplesSum of True Positives。
  • macro avg(宏平均):对所有类别的指标取平均,不考虑类别样本数量的差异。
  • weighted avg(加权平均):对所有类别的指标取加权平均,考虑类别样本数量的差异。
#描述分类器的精确度,召回率,F1Score
target_names=['Iris-setosa','Iris-versicolor','Iris-virginica']
print(metrics.classification_report(y_test,y_hat,target_names=target_names))

image-20231222152004185

2.1.5 用交叉验证(Cross Validation)来验证分类器性能

交叉验证常用于防止模型过于复杂而造成过拟合,同时也称为循环估计。基本思想是将原始数据分成K组(一般是平均分组),每个子集数据分别做一次验证集或测试集,其余的K-1个子集作为训练集。这样就会得到K个模型,取这K个模型的分类准确率的平均数作为分类器的性能指标更具说服力。

比如说在这里我们使用的是5折交叉验证(5-fold cross validation),即数据集被分成了5份,轮流将其中4份作为训练数据集,剩余1份作为测试集,进行试验。每次试验都会得出相应的正确率,将5次试验得出的相应正确率的平均值作为分类器的准确率的估计。同样的,K也可以取10,20等。

iris_data=x
iris_target=y
scores=cross_val_score(pip_LR,iris_data,iris_target.ravel(),cv=5,scoring='f1_macro')
print("5折交叉验证:\n逻辑回归分类器的准确率:%.2f 误差范围:(+/- %.2f)"%(scores.mean(), scores.std()*2))
X_trainval, X_test, y_trainval, y_test = train_test_split(iris_data, iris_target, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval, random_state=1)
print("训练集大小:{} 验证集大小:{} 测试集大小:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))
2.1.6 完整代码:
#将原始数据文件转为机器学习可用的numpy数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import chart_studio.grid_objs as go
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCVdef iris_type(s):class_label={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}return class_label[s]
df=pd.read_csv('./data/iris.data.csv',header=0)
#2.将第4列内容映射至iris_type函数定义的内容
df['Species']=df['Species'].apply(iris_type)
print(df.head())
#3.将df解析到numpy_arrat
data=np.array(df)
# print(data[:2])#4.将原始数据集分为测试集合和验证集合
# 用np.split按列(axis=1)进行分割
# (4,):分割位置,前4列作为x的数据,第4列之后都是y的数据
x,y=np.split(data,(4,),axis=1)
# X = x[:,0:2] # 取前两列特征
# 用train_test_split将数据按照7:3的比例分割训练集与测试集,
# 随机种子设为1(每次得到一样的随机数),设为0或不设(每次随机数都不同)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.7,random_state=0)
pip_LR=Pipeline([('sc',StandardScaler()),('pca',PCA(n_components=2)),('clf_lr',LogisticRegression(random_state=1))])#开始训练
pip_LR.fit(x_train,y_train.ravel())#显示当前管道的配置和参数设置,它并没有直接运行或产生实际的影响,只展示了机器学习管道的配置
Pipeline(memory=None,steps=[('sc', StandardScaler(copy=True, with_mean=True, with_std=True)), ('pca', PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,svd_solver='auto', tol=0.0, whiten=False)), ('clf_lr', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=1, solver='liblinear', tol=0.0001,verbose=0, warm_start=False))])
print("训练准确率:%0.2f"%pip_LR.score(x_train,y_train))
print("测试准确率:%0.2f"%pip_LR.score(x_test,y_test))
y_hat=pip_LR.predict(x_test)
accuracy=metrics.accuracy_score(y_test,y_hat)
print("逻辑回归分类器的准确率:%0.2f" % accuracy)#描述分类器的精确度,召回率,F1Score
target_names=['Iris-setosa','Iris-versicolor','Iris-virginica']
print(metrics.classification_report(y_test,y_hat,target_names=target_names))#交叉验证(Cross Validation)来验证分类器的性能
iris_data=x
iris_target=y
scores=cross_val_score(pip_LR,iris_data,iris_target.ravel(),cv=5,scoring='f1_macro')
print("5折交叉验证:\n逻辑回归分类器的准确率:%.2f 误差范围:(+/- %.2f)"%(scores.mean(), scores.std()*2))
X_trainval, X_test, y_trainval, y_test = train_test_split(iris_data, iris_target, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval, random_state=1)
print("训练集大小:{} 验证集大小:{} 测试集大小:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))

网格搜索验证见:用逻辑回归实现鸢尾花数据集分类(2) - Heywhale.com

2.2 使用sklearn内置的iris数据集(多分类)

2.2.1 导入数据集
#导入内置数据集,已经处理空置,无需进行预处理
iris = load_iris()print('数据集的前5个样例', iris.data[0:5])
image-20231222155315033
2.2.2 划分训练集和测试集
y = iris.target
X = iris.data
X_train, X_test, Y_train, Y_test = train_test_split(X, y, train_size=0.8, random_state=2020)
2.2.3 定义逻辑回归模型并训练
logistic = LogisticRegression(random_state=0,solver='lbfgs')
logistic.fit(X_train, Y_train)
print('the weight of Logistic Regression:\n',logistic.coef_)
print('the intercept(w0) of Logistic Regression:\n',logistic.intercept_)
y_train_predict=logistic.predict(X_train)
y_test_predict = logistic.predict(X_test)
image-20231222155536681

可以看到此处打印出了三组参数,这是因为这里我们是三分类问题。

2.2.5 用训练好的模型在训练集和测试集上做预测
#由于逻辑回归模型是概率预测模型,所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = logistic.predict_proba(X_train)
test_predict_proba = logistic.predict_proba(X_test)
print('The test predict Probability of each class:\n',test_predict_proba)# 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(Y_train,y_train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(Y_test,y_test_predict))confusion_matrix_result = metrics.confusion_matrix(y_test_predict,Y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

image-20231222155832143

2.2.6 对预测结果进行可视化
confusion_matrix_result = metrics.confusion_matrix(y_test_predict,Y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
image-20231222155920181

通过结果我们可以发现,其在三分类的结果其在测试集上的准确度为: 86.67% ,这是由于’versicolor’(1)和 ‘virginica’(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

从混淆矩阵中可以看出:标签值y=0的10个样本都被正确分类;标签值y=1的10个样本中,有8个被正确分类,其中有两个被误分类为y=2;标签值y=2的10个样本中,有8个被正确分类,其中有两个被误分类为y=1。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598089.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

copilot插件全解

COPILOT是一个基于AI的编程辅助工具,它可以帮助程序员自动编写代码,提高开发效率。COPILOT的插件主要是为了将其功能集成到不同的编程环境中,方便程序员使用。 目前,COPILOT支持多种编程环境,包括Visual Studio Code、…

钉钉审批流程解读

组织机构 部门 部门可以创建下级部门部门可以设置部门主管,可以是多人部门可以默认构建,沟通群可以设置部门信息,比如电话、简介可以设置部门的可见性,比如隐藏本部门,本部门将不会在组织机构、搜索,个人…

如何从格式化的 Windows 和 Mac 电脑硬盘恢复文件

格式化硬盘可为您提供全新的体验。它可以是硬盘驱动器定期维护的一部分,是清除不再使用的文件的一种方法,在某些情况下,它是处理逻辑损坏的万福玛利亚。但是,许多用户发现自己格式化了错误的分区或驱动器,或者后来意识…

c语言-指针进阶

文章目录 前言一、字符指针二、数组指针2.1 数组指针基础2.2 数组指针作函数参数 总结 前言 在c语言基础已经介绍过关于指针的概念和基本使用,本篇文章进一步介绍c语言中关于指针的应用。 一、字符指针 字符指针是指向字符的指针。 结果分析: "ab…

elementui loading自定义图标和字体样式

需求:页面是用了很多个loading,需要其中有一个字体大些(具体到图标也一样的方法,换下类名就行) 遇见的问题:改不好的话会影响其他的loading样式(一起改变了) 效果展示 改之前 改之…

使用 Kafka 和 CDC 将数据从 MongoDB Atlas 流式传输到 SingleStore Kai

SingleStore 提供了变更数据捕获 (CDC) 解决方案,可将数据从 MongoDB 流式传输到 SingleStore Kai。在本文中,我们将了解如何将 Apache Kafka 代理连接到 MongoDB Atlas,然后使用 CDC 解决方案将数据从 MongoDB Atlas 流式传输到 SingleStore…

AQS原来是这么设计的,泰裤辣!

缘起 每门编程语言基本都离不开并发问题,Java亦如此。谈到Java的并发就离不开Doug lea老爷子贡献的juc包,而AQS又是juc里面的佼佼者 因此今天就一起来聊聊AQS 概念 AQS是什么,这里借用官方的话 Provides a framework for implementing blo…

第11课 实现桌面与摄像头叠加

在上一节,我们实现了桌面捕获功能,并成功把桌面图像和麦克风声音发送给对方。在实际应用中,有时候会需要把桌面与摄像头图像叠加在一起发送,这节课我们就来看下如何实现这一功能。 1.备份与修改 备份demo10并修改demo10为demo11…

前端跨域问题的解决思路

目录 前言 跨域问题的解决思路 一般跨域的解决方案 前言 做了一个简单页面,做了一些数据埋点,想通过企业微信机器人来推送数据,遇到了一些问题,顺便记录下。 跨域问题的解决思路 由于是项目比较简单,直接使用了aj…

《Effective C++》《Resource Management》

文章目录 13、term13:Use objects to manage resources14、term14:Think carefully about copying behavior in resource-managing classes15、term15:Provide access to raw resources in resource-managing classes法一: 使用智能指针的get进行显示转换法二&#…

Redis 连接 命令

目录 1.Redis Echo 命令 - 打印字符串简介语法可用版本: > 1.0.0返回值: 返回字符串本身。 示例 2.Redis Select 命令 - 切换到指定的数据库简介语法可用版本: > 1.0.0返回值: 总是返回 OK 。 示例 3.Redis Ping 命令 - 查看服务是否运行简介语法可用版本: > 1.0.0返回…

Apache 网页优化

目录 1.网页压缩与缓存 1.1 网页压缩 1. gzip 介绍 2. Http的压缩过程 3. Apache的压缩模块 4. mod_deflate模块 1.2 网页缓存 1. 配置 mod_expires 模块启用 2. 隐藏版本信息 2.1 配置Apache隐藏版本信息 2.2 Apache 防盗链 1. 配置防盗链 2.检查是否安装mod_re…

景联文科技GPT教育题库:AI教育大模型的强大数据引擎

GPT-4发布后,美国奥数队总教练、卡耐基梅隆大学数学系教授罗博认为,这个几乎是用“刷题”方式喂大的AI教育大模型的到来,意味着人类的刷题时代即将退出历史舞台。 未来教育将更加注重学生的个性化需求和多元化发展,借助GPT和AI教育…

你想过在 C++ 中使用契约和反射特性吗?

以下内容为本人的学习笔记,如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/fOEG22dQqKSpsZmk8z6w6g ISO/IEC C 技术委员会主持人 Herb Sutter 报告称,C26 将具有新的功能,包括契约和反射。 该委员会…

Java异常简单介绍

文章目录 1. 异常分类和关键字1.1 分类1.2 关键字 2. Error2.1 Error定义2.2 常见的Error2.2.1 VirtualMachineError2.2.2 ThreadDeath2.2.3 LinkageError2.2.4 AssertionError2.2.5 InternalError2.2.6 OutOfMemoryError2.2.6.1 OOM原因2.2.6.2 OutOfMemoryError会导致宕机吗 …

大创项目推荐 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…

Leetcode算法系列| 11. 盛最多水的容器

目录 1.题目2.题解C# 解法一:暴力C# 解法二:双指针(左指针大于右指针,left)C# 解法三:双指针优化(左指针小于等于最小高度,left)Java 解法一:双指针Python3 解…

经常使用耳机对耳朵听力有影响吗?戴哪种耳机不伤耳朵听力?

经常使用耳机容易引起末梢感受器官受损,可能造成内耳功能损伤,出现耳聋、耳鸣等听力的适应性下降的症状,建议使用耳机时间不要过长,并且音量不要过大。如果想保护听力的话,建议选择骨传导耳机,骨传导耳机通…

单片机快速入门

参考连接: 安装MinGW-64(在win10上搭建C/C开发环境)https://zhuanlan.zhihu.com/p/85429160MinGW-64; 链接:https://pan.baidu.com/s/1oE1FmjyK7aJPnDC8vASmCg?pwdy1mz 提取码:y1mz --来自百度网盘超级会员V7的分享C…

rotate-captcha-crack项目重新训练百度旋转验证码角度预测模型

参考: building-powerful-image-classification-models-using-very-little-data.html https://github.com/Starry-OvO/rotate-captcha-crack (主)作者思路:https://www.52pojie.cn/thread-1754224-1-1.html 纠正 新版百度、百家…