SingleStore 提供了变更数据捕获 (CDC) 解决方案,可将数据从 MongoDB 流式传输到 SingleStore Kai。在本文中,我们将了解如何将 Apache Kafka 代理连接到 MongoDB Atlas,然后使用 CDC 解决方案将数据从 MongoDB Atlas 流式传输到 SingleStore Kai。我们还将使用 Metabase 为 SingleStore Kai 创建一个简单的分析仪表板。
介绍
CDC 是一种跟踪数据库或系统中发生的更改的方法。SingleStore 现在提供了与 MongoDB 配合使用的 CDC 解决方案。
为了演示 CDC 解决方案,我们将使用Kafka 代理将数据流式传输到 MongoDB Atlas 集群,然后使用 CDC 管道将数据从 MongoDB Atlas 传播到 SingleStore Kai。我们还将使用 Metabase 创建一个简单的分析仪表板。
图 1 显示了我们系统的高级架构。
图 1. 高级架构(来源:SingleStore)。
我们将在以后的文章中重点介绍使用 CDC 解决方案的其他场景。
MongoDB Atlas
我们将在 M0 沙箱中使用 MongoDB Atlas。我们将在Database Access下配置具有atlasAdmin权限的管理员用户。我们将暂时允许从网络访问下的任何地方(IP 地址 0.0.0.0/0)进行访问。我们将记下用户名、密码和主机。
Apache Kafka
我们将配置 Kafka 代理将数据流式传输到MongoDB Atlas中。我们将使用 Jupyter Notebook 来实现此目的。
首先,我们将安装一些库:
!pip install pymongo kafka-python --quiet
接下来,我们将连接到 MongoDB Atlas 和 Kafka 代理:
from kafka import KafkaConsumer
from pymongo import MongoClienttry:client = MongoClient("mongodb+srv://<username>:<password>@<host>/?retryWrites=true&w=majority")db = client.adtechprint("Connected successfully")
except:print("Could not connect")consumer = KafkaConsumer("ad_events",bootstrap_servers = ["public-kafka.memcompute.com:9092"]
我们将用我们之前从 MongoDB Atlas 保存的值替换<username>
,<password>
和。<host>
最初,我们将 100 条记录加载到 MongoDB Atlas 中,如下所示:
MAX_ITERATIONS = 100for iteration, message in enumerate(consumer, start = 1):if iteration > MAX_ITERATIONS:breaktry:record = message.value.decode("utf-8")user_id, event_name, advertiser, campaign, gender, income, page_url, region, country = map(str.strip, record.split("\t"))events_record = {"user_id": int(user_id),"event_name": event_name,"advertiser": advertiser,"campaign": int(campaign.split()[0]),"gender": gender,"income": income,"page_url": page_url,"region": region,"country": country}db.events.insert_one(events_record)except Exception as e:print(f"Iteration {iteration}: Could not insert data - {str(e)}")
数据应该成功加载,我们应该看到一个名为 的数据库,adtech
其中包含一个名为 的集合events
。集合中的文档在结构上应类似于以下示例:
_id: ObjectId('64ec906d0e8c0f7bcf72a8ed')
user_id: 3857963415
event_name: "Impression"
advertiser: "Sherwin-Williams"
campaign: 13
gender: "Female"
income: "25k and below",
page_url: "/2013/02/how-to-make-glitter-valentines-heart-boxes.html/"
region: "Michigan"
country: "US"
events
集合存储 的详细信息advertiser
以及campaign
有关用户的各种人口统计信息,例如gender
和income
。 SingleStore Kai
上一篇文章介绍了创建免费 SingleStoreDB 云帐户的步骤。我们将使用以下设置:
- 工作区组名称: CDC 演示组
- 云提供商: AWS
- 区域:美国东部 1(弗吉尼亚北部)
- 工作区名称: cdc-demo
- 尺码: S-00
- 设置:
- SingleStore Kai 选择
一旦工作区可用,我们将记下密码和主机。该主机可从CDC Demo Group > Overview > Workspaces > cdc-demo > Connect > Connect Directly > SQL IDE > Host获取。稍后我们将需要元数据库的此信息。我们还将通过在CDC 演示组 > 防火墙下配置防火墙来暂时允许从任何地方进行访问。
从左侧导航窗格中,我们选择DEVELOP > SQL Editor来创建adtech
数据库link
,如下所示:
CREATE DATABASE IF NOT EXISTS adtech;
USE adtech;DROP LINK adtech.link;CREATE LINK adtech.link AS MONGODB
CONFIG '{"mongodb.hosts": "<primary>:27017, <secondary>:27017, <secondary>:27017","collection.include.list": "adtech.*","mongodb.ssl.enabled": "true","mongodb.authsource": "admin","mongodb.members.auto.discover": "false"}'
CREDENTIALS '{"mongodb.user": "<username>","mongodb.password": "<password>"}';CREATE TABLES AS INFER PIPELINE AS LOAD DATA LINK adtech.link '*' FORMAT AVRO;
<username>
和。<password>
我们还需要将<primary>
、<secondary>
和的值替换<secondary>
为 MongoDB Atlas 中每个值的完整地址。 我们现在将检查是否有任何表,如下所示:
SHOW TABLES;
这应该显示一张名为events
:
+------------------+
| Tables_in_adtech |
+------------------+
| events |
+------------------+
我们将检查表的结构:
DESCRIBE events;
输出应如下所示:
+-------+------+------+------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------+------+------+---------+-------+
| _id | text | NO | UNI | NULL | |
| _more | JSON | NO | | NULL | |
+-------+------+------+------+---------+-------+
接下来,我们将检查是否有pipelines
:
SHOW PIPELINES;
这将显示events
当前调用的一个管道Stopped
:
+---------------------+---------+-----------+
| Pipelines_in_adtech | State | Scheduled |
+---------------------+---------+-----------+
| events | Stopped | False |
+---------------------+---------+-----------+
现在我们将启动events
管道:
START ALL PIPELINES;
并且状态应更改为Running
:
+---------------------+---------+-----------+
| Pipelines_in_adtech | State | Scheduled |
+---------------------+---------+-----------+
| events | Running | False |
+---------------------+---------+-----------+
如果我们现在运行以下命令:
SELECT COUNT(*) FROM events;
它应该返回 100 作为结果:
+----------+
| COUNT(*) |
+----------+
| 100 |
+----------+
我们将检查表中的一行events
,如下所示:
SELECT * FROM events LIMIT 1;
输出应类似于以下内容:
+--------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| _id | _more |
+--------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {"$oid": "64ec906d0e8c0f7bcf72a8f7"} | {"_id":{"$oid":"64ec906d0e8c0f7bcf72a8f7"},"advertiser":"Wendys","campaign":13,"country":"US","event_name":"Click","gender":"Female","income":"75k - 99k","page_url":"/2014/05/flamingo-pop-bridal-shower-collab-with.html","region":"New Mexico","user_id":3857963416} |
+--------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
CDC 解决方案已成功连接到 MongoDB Atlas 并将所有 100 条记录复制到 SingleStore Kai。
现在让我们使用 Metabase 创建一个仪表板。
元数据库
上一篇文章描述了如何安装、配置和创建元数据库连接的详细信息。我们将使用前一篇文章中使用的查询的细微变化来创建可视化。
1. 活动总数
SELECT COUNT(*) FROM events;
2. 各地区活动
SELECT _more::country AS `events.country`, COUNT(_more::country) AS 'events.countofevents'
FROM adtech.events AS events
GROUP BY 1;
3. Top 5 广告商活动
SELECT _more::advertiser AS `events.advertiser`, COUNT(*) AS `events.count`
FROM adtech.events AS events
WHERE (_more::advertiser LIKE '%Subway%' OR _more::advertiser LIKE '%McDonals%' OR _more::advertiser LIKE '%Starbucks%' OR _more::advertiser LIKE '%Dollar General%' OR _more::advertiser LIKE '%YUM! Brands%' OR _more::advertiser LIKE '%Dunkin Brands Group%')
GROUP BY 1
ORDER BY `events.count` DESC;
4. 按性别和收入划分的广告访问者
SELECT *
FROM (SELECT *, DENSE_RANK() OVER (ORDER BY xx.z___min_rank) AS z___pivot_row_rank, RANK() OVER (PARTITION BY xx.z__pivot_col_rank ORDER BY xx.z___min_rank) AS z__pivot_col_ordering, CASEWHEN xx.z___min_rank = xx.z___rank THEN 1ELSE 0END AS z__is_highest_ranked_cellFROM (SELECT *, Min(aa.z___rank) OVER (PARTITION BY aa.`events.income`) AS z___min_rankFROM (SELECT *, RANK() OVER (ORDER BY CASEWHEN bb.z__pivot_col_rank = 1 THEN (CASEWHEN bb.`events.count` IS NOT NULL THEN 0ELSE 1END)ELSE 2END, CASEWHEN bb.z__pivot_col_rank = 1 THEN bb.`events.count`ELSE NULLEND DESC, bb.`events.count` DESC, bb.z__pivot_col_rank, bb.`events.income`) AS z___rankFROM (SELECT *, DENSE_RANK() OVER (ORDER BY CASEWHEN ww.`events.gender` IS NULL THEN 1ELSE 0END, ww.`events.gender`) AS z__pivot_col_rankFROM (SELECT _more::gender AS `events.gender`, _more::income AS `events.income`, COUNT(*) AS `events.count`FROM adtech.events AS eventsWHERE (_more::income <> 'unknown' OR _more::income IS NULL)GROUP BY 1, 2) ww) bbWHERE bb.z__pivot_col_rank <= 16384) aa) xx) zz
WHERE (zz.z__pivot_col_rank <= 50 OR zz.z__is_highest_ranked_cell = 1) AND (zz.z___pivot_row_rank <= 500 OR zz.z__pivot_col_ordering = 1)
ORDER BY zz.z___pivot_row_rank;
图 2 显示了 AdTech 仪表板上图表大小和位置的示例。我们将自动刷新选项设置为 1 分钟。
图 2.最终仪表板。
如果我们通过更改 使用 Jupyter Notebook 将更多数据加载到 MongoDB Atlas 中 MAX_ITERATIONS
,我们将看到数据传播到 SingleStore Kai 以及 AdTech 仪表板中反映的新数据。
总结
在本文中,我们创建了一个 CDC 管道,以使用 SingleStore Kai 增强 MongoDB Atlas。正如多个基准测试所强调的那样,SingleStore Kai 因其卓越的性能而可用于分析。我们还使用 Metabase 创建了一个快速的可视化仪表板,以帮助我们深入了解我们的广告活动。
作者:Akmal Chaudhri
更多技术干货请关注公号【云原生数据库】
squids.cn,云数据库RDS,迁移工具DBMotion,云备份DBTwin等数据库生态工具。
irds.cn,多数据库管理平台(私有云)。