快速、准确地检测和分类病毒序列分析工具 ViralCC的介绍和详细使用方法,fudai shiyong ijaoben

介绍

viralcc是一个基因组病毒分析工具,可以用于快速、准确地检测和分类病毒序列。

github:dyxstat/ViralCC: ViralCC: leveraging metagenomic proximity-ligation to retrieve complete viral genomes (github.com)

 Instruction of reproducing results in ViralCC paper:dyxstat/Reproduce_ViralCC: Instruction of reproducing results in ViralCC paper (github.com)

安装viralcc:

首先,确保你已经安装了Python 3.6或更高版本。

从GitHub上下载viralcc的代码。在终端中输入以下命令:

git clone https://github.com/dyxstat/ViralCC.git

进入viralcc文件夹:

cd viralcc

建议使用mamba 或 conda 直接安装吧:

#安装前先修改配置文件viralcc_linux_env.yaml,将环境名称修改为自己想要的
#其他的东西不要动name: viralcc    //修改这个就行了,原来为ViralCC_ENV
channels:- bioconda- conda-forge- defaults- r
dependencies:- _libgcc_mutex=0.1- _openmp_mutex=4.5- _r-mutex=1.0.1- binutils_impl_linux-64=2.35.1- binutils_linux-64=2.35- biopython=1.78- bwidget=1.9.14- bzip2=1.0.8

mamba安装:

mamba env create -f viralcc_linux_env.yaml

 使用viralcc:

在终端中输入以下命令,可以查看viralcc的可用命令和选项:

mamba activate viralccpython ./viralcc.py  -h
usage: viralcc.py [-h] {pipeline} ...ViralCC: a metagenomic proximity-based tool to retrieve complete viral genomesoptional arguments:-h, --help  show this help message and exitcommands:Valid commands

准备输入文件。viralcc支持FASTA和FASTQ格式的输入文件,你可以将你的病毒序列文件准备好。

运行viralcc进行病毒分析测试。在终端中输入以下命令:

python ./viralcc.py pipeline -v Test/final.contigs.fa Test/MAP_SORTED.bam Test/viral_contigs.txt Test/out_test

使用分析流程:

指令:处理原始数据 按照本节的指示,对原始shotgun和Hi-C数据进行处理,并生成ViralCC的输入:

  1. 清理原始shotgun和Hi-C读段 使用BBTools套件中的bbduk工具去除接头序列,参数为ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo;同时使用bbduk进行质量修剪,参数为trimq=10 qtrim=r ftm=5 minlen=50。另外,通过设置bbduk参数ftl=10来剪切Hi-C读段的前10个核苷酸。使用BBTools套件中的clumpify.sh脚本来移除Hi-C读段中的相同PCR光学重复和Tile边缘重复。

  2. 组装shotgun读段 对shotgun文库,采用如MEGAHIT之类的de novo组装软件进行元基因组组装。

    megahit -1 SG1.fastq.gz -2 SG2.fastq.gz -o ASSEMBLY --min-contig-len 1000 --k-min 21 --k-max 141 --k-step 12 --merge-level 20,0.95

  3. 将Hi-C双端读段比对到组装得到的contigs上 使用如BWA MEM这样的DNA比对软件将Hi-C双端读段比对至已组装的contigs。然后应用samtools(参数为‘view -F 0x904’)移除未比对、补充比对以及二级比对的读段。需要使用'samtools sort'按名称对BAM文件进行排序。

    bwa index final.contigs.fa
    bwa mem -5SP final.contigs.fa hic_read1.fastq.gz hic_read2.fastq.gz > MAP.sam
    samtools view -F 0x904 -bS MAP.sam > MAP_UNSORTED.bam
    samtools sort -n MAP_UNSORTED.bam -o MAP_SORTED.bam

  4. 从组装的contigs中识别病毒contigs 利用如VirSorter这样的病毒序列检测软件对组装后的contigs进行筛选以识别病毒contigs。

    wrapper_phage_contigs_sorter_iPlant.pl -f final.contigs.fa --db 1 --wdir virsorter_output --data-dir virsorter-data

指令:运行ViralCC

python ./viralcc.py pipeline [参数] FASTA文件 BAM文件 VIRAL文件 输出目录

参数说明: --min-len: 可接受的最小contig长度(默认值为1000) --min-mapq: 最小可接受的比对质量(默认值为30) --min-match: 接受的比对至少要有N个匹配(默认值为30) --min-k: 确定宿主邻近图的k值下限(默认值为4) --random-seed: Leiden聚类算法的随机种子(默认值为42) --cover (可选): 覆盖现有文件。如果不指定此选项,若检测到输出文件已存在,则会返回错误。 -v (可选): 显示有关ViralCC过程更多详细信息的详尽输出。

输入文件: FASTA_file: 已组装contig的fasta文件(例如:Test/final.contigs.fa) BAM_file: Hi-C比对结果的bam文件(例如:Test/MAP_SORTED.bam) VIRAL_file: 包含识别出的病毒contigs名称的txt文件,每行一个名称且无表头(例如:Test/viral_contigs.txt)

输出文件: VIRAL_BIN: 包含草稿病毒bin的fasta文件夹 cluster_viral_contig.txt: 聚类结果,包含两列,第一列是病毒contig名称,第二列是组号 viral_contig_info.csv: 病毒contig信息,包含三列(contig名称、contig长度和GC含量) prokaryotic_contig_info.csv: 非病毒contig信息,包含三列(contig名称、contig长度和GC含量) viralcc.log: ViralCC日志文件

示例:

python ./viralcc.py pipeline -v final.contigs.fa MAP_SORTED.bam viral_contigs.txt out_directory

实用脚本位置:Reproduce_ViralCC/Scripts at main · dyxstat/Reproduce_ViralCC (github.com)

concatenation.py

import os
import io
import sys
import argparse
import Bio.SeqIO as SeqIO
import gzip
import numpy as np
import pandas as pddef get_no_hidden_folder_list(wd):folder_list = []for each_folder in os.listdir(wd):if not each_folder.startswith('.'):folder_list.append(each_folder)folder_list_sorte = sorted(folder_list)return folder_list_sortedef main(path ,  output_file):file_list = get_no_hidden_folder_list(path)bin_num = len(file_list)	    for k in range(bin_num):seq_file = '%s/%s' % (path , file_list[k])if k==0:op1 = 'echo ' + '\">BIN_' + str(k) + '\" ' + '> ' + output_fileelse:op1 = 'echo ' + '\">BIN_' + str(k) + '\" ' + '>> ' + output_fileos.system(op1)op2 = 'grep ' + '-v ' + '\'>\' ' + seq_file  + ' >> ' + output_fileos.system(op2)    if __name__ == "__main__":parser = argparse.ArgumentParser()parser.add_argument("-p",help="path")parser.add_argument("-o",help="output_file")args=parser.parse_args()main(args.p,args.o)

 find_viral_contig.R

virsorterfile = 'VIRSorter_global-phage-signal.csv'
vs.pred <- read.csv(virsorterfile,quote="",head=F)
vs.head <- read.table(virsorterfile,sep=",",quote="",head=T,comment="",skip=1,nrows=1)
colnames(vs.pred) <- colnames(vs.head)
colnames(vs.pred)[1] <- "vs.id"
vs.cats <- do.call(rbind,strsplit(x=as.character(vs.pred$vs.id[grep("category",vs.pred$vs.id)]),split=" - ",fixed=T))[,2]
vs.num <- grep("category",vs.pred$vs.id)
vs.pred$Category <- paste(c("",rep.int(vs.cats, c(vs.num[-1],nrow(vs.pred)) - vs.num)), vs.pred$Category)
vs.pred <- vs.pred[-grep("#",vs.pred$vs.id),]vs.pred$node <- gsub(pattern="VIRSorter_",replacement="",x=vs.pred$vs.id)
vs.pred$node <- gsub(pattern="-circular",replacement="",x=vs.pred$node)
vs.pred$node <- gsub(pattern="cov_(\\d+)_",replacement="cov_\\1.",x=vs.pred$node,perl=F)rownames(vs.pred) = seq(1 , 1393)vs_phage = vs.pred[1:1338 , ]phage_name = vs_phage$nodefor(i in 1:1338)
{temp = paste0(strsplit(phage_name[i],split='_')[[1]][1] , '_' , strsplit(phage_name[i],split='_')[[1]][2])phage_name[i] = temp
}group_name = rep('group0' , 1338)
phage = cbind(phage_name , group_name)write.table(phage , file = 'viral.txt' ,  sep='\t', row.names = F , col.names = F , quote =FALSE)

plot_graph.R

####################write ggplot figure###############
library(ggplot2)
library(ggpubr)
library(ggforce)theme_set(theme_bw()+theme(panel.spacing=grid::unit(0,"lines")))##########柱状图对于不同方法和分类###########
Rank = rep(c('F-score' , 'ARI' , 'NMI' , 'Homogeneity') , each = 5)
Pipeline = rep(c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'),times = 4)
Number = c(0.198,0.485,0.366,0.404,0.795,0.111,0.471,0.302,0.274,0.787,0.724,0.742,0.782,0.817,0.929,0.570,0.723,0.687,0.691,0.921)col = c('#8FBC94' , '#4FB0C6', "#4F86C6", "#527F76", '#CC9966')df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'))
df$Rank = factor(df$Rank , levels = c('F-score' , 'ARI' , 'NMI', 'Homogeneity'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'dodge')+scale_fill_manual(values = col,limits= c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'))+coord_cartesian(ylim = c(0.05,0.975))+labs(x = "Clustering metrics", y = "Scores", title = "The mock human gut dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig2a.eps", width = 7 , height = 6 , device = cairo_ps)Rank = rep(c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'),each = 3)
Pipeline = rep(c('Moderately complete' , 'Substantially complete' ,  'Near-complete'),times = 5)
Number = c(2,4,1,1,5,5, 6,1,0,1,0,5, 4,2,26)col = c("#8FBC94","#77AAAD","#6E7783")df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))
df$Rank = factor(df$Rank , levels = c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col,limits= c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))+labs(x = "Binning method", y = "Number of viral bins", title = "The mock human gut dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig2b.eps", width = 7, height = 6, device = cairo_ps)viral_num = data.frame('number' = c(1, 4 , 1 , 1 , 13),'method' = c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'))viral_num$method = factor(viral_num$method , levels=c('VAMB' , 'CoCoNet' , 'vRhyme' , 'bin3C' , 'ViralCC'))ggplot(data = viral_num, aes(x = method , y = number )) + geom_bar(stat = "identity", position='dodge' , width = 0.9,fill = 'steelblue') +  labs(x = 'Binning method', y = 'Number of high-quality vMAGs within the co-host systems', title = "The mock human gut dataset") +theme(panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig2c.eps", width = 7, height = 6, device = cairo_ps)##############human gut 2a############
Rank = rep(c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'),each = 5)
Completeness = rep(c( "≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"),times = 5)
###Number needs to be 4*5 matrix##
Number = c(11 , 12 , 17  , 7 , 78,1 , 0 , 1 , 4 , 33,10, 11, 10, 6, 60,2, 1 , 3 , 2 , 25,10, 11, 14, 15, 69)col = c("#023FA5" ,"#5465AB" ,"#7D87B9" ,"#A1A6C8" ,"#BEC1D4")[5:1]
df <- data.frame(Rank = Rank, Completeness = Completeness, Number = Number)
df$Completeness = factor(df$Completeness , levels=c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))
df$Rank = factor(df$Rank , levels = c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Completeness)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col , limits= c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))+labs(x = "Binning method", y = "Number of bins", title = "CheckV results on the real human gut dataset")+coord_flip()+theme(legend.position="bottom",legend.title=element_text(size = 11),legend.text = element_text(size = 11),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 13,face = "bold"),axis.title.y = element_text(size = 13,face = "bold"),title = element_text(size = 14,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig3a.eps", width = 6.3, height = 5, device = cairo_ps)##############cow fecal 2b############
Rank = rep(c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'),each = 5)
Completeness = rep(c( "≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"),times = 5)
###Number needs to be 4*5 matrix##
Number = c(21 , 14 , 21  , 9 , 60,14 , 17 , 12 , 8 , 31,18, 14 , 16 , 14 , 36,3, 3 , 2 , 2 , 25,19,17,10,8,23)col = c("#023FA5" ,"#5465AB" ,"#7D87B9" ,"#A1A6C8" ,"#BEC1D4")[5:1]
df <- data.frame(Rank = Rank, Completeness = Completeness, Number = Number)
df$Completeness = factor(df$Completeness , levels=c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))
df$Rank = factor(df$Rank , levels = c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Completeness)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col , limits= c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))+labs(x = "Binning method", y = "Number of bins", title = "CheckV results on the real cow fecal dataset")+coord_flip()+theme(legend.position="bottom",legend.title=element_text(size = 11),legend.text = element_text(size = 11),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 13,face = "bold"),axis.title.y = element_text(size = 13,face = "bold"),title = element_text(size = 14,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig3b.eps", width = 6.3, height = 5, device = cairo_ps)##############wastewater 2c############
Rank = rep(c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'),each = 5)
Completeness = rep(c( "≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"),times = 5)
###Number needs to be 3*5 matrix##
Number = c(30 , 27 , 21  , 17 , 77,19, 20 , 11 , 11 , 28,14,16,14,15,32,2, 8 , 8 , 6 , 38,20,34,14,13,58)col = c("#023FA5" ,"#5465AB" ,"#7D87B9" ,"#A1A6C8" ,"#BEC1D4")[5:1]
df <- data.frame(Rank = Rank, Completeness = Completeness, Number = Number)
df$Completeness = factor(df$Completeness , levels=c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))
df$Rank = factor(df$Rank , levels = c('ViralCC' ,'bin3C' , 'vRhyme' , 'CoCoNet' , 'VAMB'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Completeness)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col , limits= c("≥ 50%", "≥ 60%", "≥ 70%", "≥ 80%" , "≥ 90%"))+labs(x = "Binning method", y = "Number of bins", title = "CheckV results on the real wastewater dataset")+coord_flip()+theme(legend.position="bottom",legend.title=element_text(size = 11),legend.text = element_text(size = 11),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 13,face = "bold"),axis.title.y = element_text(size = 13,face = "bold"),title = element_text(size = 14,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("fig3c.eps", width = 6.35, height = 5, device = cairo_ps)########Fraction of host by different number of viruses#########df<-data.frame(group=c('infected by one virus' , 'infected by two viruses', 'infected by three viruses'),value=c(25,35,45))
df$group = as.vector(df$group)ggplot(df,aes(x="",y=value,fill=group))+geom_bar(stat="identity")+coord_polar("y",start=1) + geom_text(aes(y=c(0,cumsum(value)[-length(value)]),label=percent(value/100)),size=5)+theme_minimal()+theme(axis.title=element_blank(),axis.ticks=element_blank(),axis.text = element_blank(),legend.title = element_blank())+scale_fill_manual(values=c("darkgreen","orange","deepskyblue"))##########Supplementary material###########
########Mock cow fecal dataset#######
Rank = rep(c('F-score' , 'ARI' , 'NMI' , 'Homogeneity') , each = 4)
Pipeline = rep(c( 'CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'),times = 4)
Number = c(0.564, 0.763 , 0.936 , 0.936,0.455 ,0.719, 0.926 , 0.926,0.796 , 0.885 , 0.969 , 0.963,0.661 ,0.806, 0.940 , 1)col = c('#4FB0C6', "#4F86C6", "#527F76", '#CC9966')df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))
df$Rank = factor(df$Rank , levels = c('F-score' , 'ARI' , 'NMI', 'Homogeneity'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'dodge')+scale_fill_manual(values = col,limits= c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))+coord_cartesian(ylim = c(0.3,1))+labs(x = "Clustering metrics", y = "Scores", title = "The mock cow fecal dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("sp1a.eps", width = 6, height = 5, device = cairo_ps)Rank = rep(c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'),each = 3)
Pipeline = rep(c('Moderately complete' , 'Substantially complete' ,  'Near-complete'),times = 4)
Number = c(1 , 1 , 3 , 3,2,2,1, 3 , 5 , 0 ,0 , 8 )col = c("#8FBC94","#77AAAD","#6E7783")df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))
df$Rank = factor(df$Rank , levels = c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'stack')+coord_cartesian(ylim = c(0 , 9))+scale_y_discrete(limits = c(0 , 3 , 6 , 9))+scale_fill_manual(values = col,limits= c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))+labs(x = "Binning method", y = "Number of viral bins", title = "The mock cow fecal dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("sp1b.eps", width = 6, height = 5, device = cairo_ps)##########Supplementary material###########
########Mock wastewater fecal#######
Rank = rep(c('F-score' , 'ARI' , 'NMI' , 'Homogeneity') , each = 4)
Pipeline = rep(c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'),times = 4)
Number = c(0.667,0.657,0.858,0.903,0.602 ,0.596,0.828,0.891,0.806 ,0.843, 0.898,0.937,0.687 ,0.746, 0.816,0.881)col = c('#4FB0C6', "#4F86C6", "#527F76", '#CC9966')df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))
df$Rank = factor(df$Rank , levels = c('F-score' , 'ARI' , 'NMI', 'Homogeneity'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'dodge')+scale_fill_manual(values = col,limits= c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))+coord_cartesian(ylim = c(0.1,0.97))+labs(x = "Clustering metrics", y = "Scores", title = "The mock wastewater dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("sp1c.eps", width = 6, height = 5, device = cairo_ps)Rank = rep(c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'),each = 3)
Pipeline = rep(c('Moderately complete' , 'Substantially complete' ,  'Near-complete'),times = 4)
Number = c( 5 , 3 , 1 , 1,2,2,1, 3 , 1 , 1 ,3 , 12 )col = c("#8FBC94","#77AAAD","#6E7783")df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))
df$Rank = factor(df$Rank , levels = c('CoCoNet' , 'vRhyme', 'bin3C' , 'ViralCC'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col,limits= c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))+labs(x = "Binning method", y = "Number of viral bins", title = "The mock wastewater dataset")+theme(legend.position="bottom",legend.title=element_blank(),legend.text = element_text(size = 12),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 16,face = "bold"),plot.title = element_text(hjust = 0.5))ggsave("sp1d.eps", width = 6, height = 5, device = cairo_ps)##########CheckM results#############
Rank = rep(c('MetaBAT2' , 'CoCoNet' , 'bin3C' , 'ViralCC'),each = 3)
Pipeline = rep(c('Moderately complete' , 'Substantially complete' ,  'Near-complete'),times = 4)
Number = c(3 , 4 , 4  , 5 , 3 , 1 , 1, 3 , 1 , 2 ,2 , 12 )col = c("#8FBC94","#77AAAD","#6E7783")df <- data.frame(Rank = Rank, Pipeline = Pipeline, Number = Number)
df$Pipeline = factor(df$Pipeline , levels=c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))
df$Rank = factor(df$Rank , levels = c('MetaBAT2' , 'CoCoNet' , 'bin3C' , 'ViralCC'))ggplot(data = df, mapping = aes(x = Rank, y = Number, fill = Pipeline)) + geom_bar(stat = 'identity', position = 'stack')+scale_fill_manual(values = col,limits= c('Moderately complete' , 'Substantially complete' ,  'Near-complete'))+labs(x = "Binning method", y = "Number of bins", title = "Mock wastewater dataset")+theme(legend.position="top",legend.title=element_blank(),legend.text = element_text(size = 11),panel.grid.major = element_blank(),   #不显示网格线panel.grid.minor = element_blank(),axis.text.x = element_text(size = 11),axis.text.y = element_text(size = 11),axis.title.x = element_text(size = 14,face = "bold"),axis.title.y = element_text(size = 14,face = "bold"),title = element_text(size = 14,face = "bold"),plot.title = element_text(hjust = 0.5))#######Compute the length of viral contigs########
contig_info = read.csv('contig_viral_info_ww.csv' , sep = ',' , header = F)
min(contig_info[,3])
max(contig_info[,3])#######Chi-square testing############
tableR = matrix(c(72,96,264,36,38,90,21,24,49,38,42,80),nrow=3)
chisq.test(tableR,correct = F)

removesmalls.pl

## removesmalls.pl
##!/usr/bin/perl
## perl removesmalls.pl 200 contigs.fasta > contigs-l200.fasta
use strict;
use warnings;my $minlen = shift or die "Error: `minlen` parameter not provided\n";
{local $/=">";while(<>) {chomp;next unless /\w/;s/>$//gs;my @chunk = split /\n/;my $header = shift @chunk;my $seqlen = length join "", @chunk;print ">$_" if($seqlen >= $minlen);}local $/="\n";
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/597686.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微众区块链观察节点的架构和原理 | 科普时间

践行区块链公共精神&#xff0c;实现更好的公众开放与监督&#xff01;2023年12月&#xff0c;微众区块链观察节点正式面向公众开放接入功能。从开放日起&#xff0c;陆续有多个观察节点在各地运行&#xff0c;同步区块链数据&#xff0c;运行区块链浏览器观察检视数据&#xf…

flutter项目用vscode打包apk包,完美运行到手机上

1.创建密钥库 执行以下命令: keytool -genkey -v -keystore F:/key.jks -keyalg RSA -keysize 2048 -validity 10000 -alias key 生成 2,048 位RSA密钥对和自签名证书 (SHA256withRSA) (有效期为 10,000 天) 2.填写密钥内容 执行以上命令后会提示一次输入密钥库密码、确认…

【ES6语法学习】解构赋值

文章目录 引言一、什么是解构赋值1.1什么是解构赋值1.2 数组的解构赋值1.2.1 基本用法1.2.2 默认值1.2.3 剩余参数 1.3 对象的解构赋值1.3.1 基本用法1.3.2 默认值1.3.2 剩余参数 1.4 字符串的解构赋值1.5 函数参数的解构赋值 二、解构赋值的优势和应用场景2.1 代码简化和可读性…

【React系列】JSX核心语法和原理

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. ES6 的 class 虽然目前React开发模式中更加流行hooks&#xff0c;但是依然有很多的项目依然是使用类组件&#x…

es索引数据过滤查询

1.我们往kibana插入数据,来进行查询 POST /t1/_doc/ {"name":"cat","age":"18","address":"BJ","job":"dev" } POST /t1/_doc/ {"name":"dog","age":"1…

改善 GitHub Pages 阅读体验:Quick Docs

一个不到 10MB 的小工具&#xff0c;来提供本地、快速的文档访问&#xff0c;来改善开发过程中&#xff0c;阅读在线文档体验糟糕的问题。 以及&#xff0c;介绍如何快速制作一个利于分发使用的&#xff0c;离线文档工具包。 写在前面 即使现在 AI 辅助编码和 Chat Bot 类的…

【git使用】了解三种git commit合并的使用场景(rebase、merge、cherry-pick)

参考 【Git学习笔记】逃不掉的merge和rebase-腾讯云开发者社区-腾讯云git merge 和 git rebase - 知乎git cherry-pick 教程 - 阮一峰的网络日志 简单理解各种合并的方法 线性合并&#xff0c;使用 rebase —— feature 分支开发&#xff0c;提交前拉取 master 最新改动进行…

初识HTTP协议

Web服务器可以接收浏览器的请求&#xff0c;并将服务器中的web项目资源响应给浏览器&#xff0c;浏览器与服务器之间进行网络通信遵循HTTP协议。 一、什么是HTTP协议 超文本传输协议&#xff08;HTTP&#xff0c;HyperText Transfer Protocol&#xff09;(浏览器---->web服务…

微信小程序:flex常用布局

在我们平时微信小程序开发过程中为了页面能达到设计小伙伴的预期&#xff0c;追求还原度&#xff0c;那我们肯定会使用很多常用的布局方式&#xff0c;那我们今天就介绍一下微信小程序中常用的一些flex布局 1、常用flex布局 /** 水平垂直居中 **/ .flex-center {display: fle…

vue3+vant4 移动端软键盘弹出 收起导致项目样式布局错乱解决方案,亲测有效!!

问题描述 最近在做vue3 H5的移动端项目 我用的是vue3vant4&#xff0c;然后在使用过程中发现 小米14手机在点击密码输入框软键盘弹出 时会导致项目布局整体向上移动 导致页面布局错乱。 原因分析&#xff1a; 在移动端软键盘弹出收起时&#xff0c;导致项目样式布局错乱的原因…

基于STM32的ESP8266 WiFi模块数据采集与显示

基于STM32的ESP8266 WiFi模块数据采集与显示是一种常见的嵌入式系统应用&#xff0c;通常用于远程数据监测和控制。在这种应用中&#xff0c;STM32作为主控制器负责采集周围环境的数据&#xff0c;通过ESP8266 WiFi模块将数据发送到远程服务器&#xff0c;并在远程服务器上进行…

03-微服务-Ribbon负载均衡

Ribbon负载均衡 1.1.负载均衡原理 SpringCloud底层其实是利用了一个名为Ribbon的组件&#xff0c;来实现负载均衡功能的。 那么我们发出的请求明明是http://userservice/user/1&#xff0c;怎么变成了http://localhost:8081的呢&#xff1f; 1.2.源码跟踪 为什么我们只输入…

小梅哥Xilinx FPGA学习笔记20——无源蜂鸣器驱动设计与验证(音乐发生器设计)

目录 一&#xff1a;章节导读 二&#xff1a;无源蜂鸣器驱动原理 三&#xff1a;PWM 发生器模块设计 3.1 PWM 发生器模块框图 3.2 PWM 发生器模块接口功能描述 3.3 PWM波生成设计文件代码 3.4 测试仿真文件 3.5 测试仿真结果 3.6 板级调试与验证之顶层文件设计 四&am…

Python:界面开发,wx入门篇

以下内容为本人的学习笔记&#xff0c;如需要转载&#xff0c;请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/3Yb_YAKiMte_f5HanetXiA 本文大概 3617 个字&#xff0c;阅读需花 10 分钟 内容不多&#xff0c;但也花了一些精力 如要交流&#xff0c;欢迎评…

@Scheduled定时任务现状与改进

项目场景&#xff1a; 定时任务现状&#xff1a;每个项目都会有一些配置信息&#xff0c;这些信息我们是都放在一个配置服务中&#xff0c;这个服务会定时从配置表中加载所有配置存入本地JVM内存&#xff0c;以供调用方获取&#xff08;调用方集成了配置服务的SDK&#xff0c;…

elasticsearch的查询方式和数据库事务隔离级别的思考

项目中用到了 elasticsearch&#xff0c;发现有几种查询方式不太一样&#xff0c;思考了一下&#xff0c;总结如下 普通分页 等同于关系数据库的分页查询&#xff0c;例如 mysql 的 limit&#xff0c;如下 sql select * from test limit 100000,10 这种查询方式有一个问题&a…

系列十一、(一)Sentinel简介

一、Sentinel简介 1.1、官网 【英文文档】 https://github.com/alibaba/Sentinel/wiki【中文文档】 https://github.com/alibaba/Sentinel/wiki/%E4%B8%BB%E9%A1%B5 1.2、概述 1.3、功能

网络路由跟踪工具

随着企业网络需求的增长&#xff0c;组织发现监控和管理其网络基础设施变得越来越困难。网络管理员正在转向其他工具和资源&#xff0c;这些工具和资源可以使他们的工作更轻松一些&#xff0c;尤其是在故障排除方面。 目前&#xff0c;网络管理员主要使用简单、免费提供的实用…

在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库

paddle infer官方目前没有发布基于cuda12的c库&#xff0c;为此参考https://www.paddlepaddle.org.cn/inference/user_guides/source_compile.html实现cuda12的编译安装&#xff0c;不料博主才边缘好自己的paddle2.6&#xff0c;paddle官方已经发布了cuda12.0的paddle2.6框架。…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)Buffer的创建和销毁、扩容、写入数据

TcpConnection:封装的就是建立连接之后得到的用于通信的文件描述符&#xff0c;然后基于这个文件描述符&#xff0c;在发送数据的时候&#xff0c;需要把数据先写入到一块内存里边&#xff0c;然后再把这块内存里边的数据发送给客户端&#xff0c;除了发送数据&#xff0c;剩下…