新手能掌握 PyTorch 的填充技术:深入理解反射、复制、零值和常数填充

目录

torch.nn子模块详解

nn.ReflectionPad1d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ReflectionPad2d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ReflectionPad3d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ReplicationPad1d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ReplicationPad2d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ReplicationPad3d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ZeroPad1d 

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ZeroPad2d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ZeroPad3d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ConstantPad1d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ConstantPad2d

参数说明:

形状(Shape):

使用示例:

注意事项:

nn.ConstantPad3d

参数说明:

形状(Shape):

使用示例:

注意事项:

总结


torch.nn子模块详解

nn.ReflectionPad1d

torch.nn.ReflectionPad1d 是 PyTorch 深度学习框架中的一个类,用于对输入的张量(tensor)进行边界反射填充。这意味着它会复制输入张量的边界值来增加其大小。这种填充方式常用于卷积神经网络中,以保持数据的空间维度。

参数说明:

  • padding:这个参数可以是一个整数或一个二元组(tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是二元组,它表示左右两边的填充大小,格式为 (padding_left, padding_right)

形状(Shape):

  • 输入:其形状可以是 (C, W)(N, C, W),其中 C 是通道数,W 是输入宽度,N 是批大小(如果有的话)。
  • 输出:形状为 (C, W_out)(N, C, W_out),其中 W_out = W_in + padding_left + padding_right。这里,W_out 是填充后的宽度。

使用示例:

1. 基本使用:如果你使用 nn.ReflectionPad1d(2),这意味着在输入张量的每一边添加两个单位的反射填充。

m = nn.ReflectionPad1d(2)
input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
output = m(input)

这将在输入张量的左右两侧分别添加两个单位的反射填充。

2. 使用不同的填充大小:你可以通过传递一个二元组来为左右两边设置不同的填充大小,比如 nn.ReflectionPad1d((3, 1))

m = nn.ReflectionPad1d((3, 1))
output = m(input)

这将在输入张量的左边添加三个单位,右边添加一个单位的反射填充。

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 边界效应:由于反射填充是通过复制边缘值实现的,因此在某些情况下可能会引入不希望的边界效应。
  • 使用场景:反射填充在视觉任务中特别有用,因为它可以保持图像边缘的连续性,而不是简单地填充零或其他值。

在数学公式中,W_out = W_in + padding_left + padding_right 描述了输出宽度(W_out)是如何根据输入宽度(W_in)以及左右两侧的填充大小计算出来的。

nn.ReflectionPad2d

 

torch.nn.ReflectionPad2d 是 PyTorch 框架中用于二维数据的一个填充类,它使用输入边界的反射进行填充。这种类型的填充在处理图像或其他二维数据时非常有用,尤其是在进行卷积操作时,需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个四元组(4-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是四元组,它表示四个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom)

形状(Shape):

  • 输入:其形状可以是 (N, C, H_in, W_in)(C, H_in, W_in),其中 N 是批大小,C 是通道数,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, H_out, W_out)(C, H_out, W_out),其中 H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 H_outW_out 分别是填充后的高度和宽度。

使用示例:

  1. 基本使用:如果使用 nn.ReflectionPad2d(2),这意味着在所有四个边界上添加两个单位的反射填充。

m = nn.ReflectionPad2d(2)
input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
output = m(input)

 这将在输入张量的每一边添加两个单位的反射填充。

    2. 使用不同的填充大小:你可以传递一个四元组来为每个边界设置不同的填充大小,比如 nn.ReflectionPad2d((1, 1, 2, 0))

m = nn.ReflectionPad2d((1, 1, 2, 0))
output = m(input)

这将在输入张量的左、右边各添加一个单位,顶部添加两个单位,底部不添加填充的反射填充。

注意事项:

  • 数据类型:确保输入数据的类型与模型其他部分一致。
  • 边界效应:反射填充通过复制边缘值,可能在某些情况下引入边界效应,需要注意这一点。
  • 适用场景:反射填充尤其适用于视觉任务,因为它在填充时保持了图像边缘的连续性。

在数学公式中,H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的高度(H_out)和宽度(W_out)是如何基于输入的高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ReflectionPad3d

torch.nn.ReflectionPad3d 是 PyTorch 深度学习框架中的一个类,专门用于对三维数据进行反射填充。这种填充方式在处理三维数据(如体积数据或视频帧)时非常有用,尤其是在卷积神经网络中需要保持数据尺寸不变的场景中。

参数说明:

  • padding:这个参数可以是一个整数或一个六元组(6-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是六元组,它表示六个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back)

形状(Shape):

  • 输入:其形状可以是 (N, C, D_in, H_in, W_in)(C, D_in, H_in, W_in),其中 N 是批大小,C 是通道数,D_in 是输入深度,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, D_out, H_out, W_out)(C, D_out, H_out, W_out),其中 D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 D_outH_outW_out 分别是填充后的深度、高度和宽度。

使用示例:

 基本使用:如果使用 nn.ReflectionPad3d(1),这意味着在所有六个边界上添加一个单位的反射填充。

m = nn.ReflectionPad3d(1)
input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
output = m(input)

这将在输入张量的每一个边界添加一个单位的反射填充。

 使用不同的填充大小:你可以传递一个六元组来为每个边界设置不同的填充大小。

# 示例:设置不同的填充大小
m = nn.ReflectionPad3d((1, 1, 2, 0, 1, 2))
# 然后使用 m(input) 来应用填充

 这将在输入张量的不同边界上添加不同大小的反射填充。

注意事项:

  • 数据类型:确保输入数据的类型与模型其他部分一致。
  • 边界效应:反射填充通过复制边缘值,可能在某些情况下引入边界效应,需要特别注意。
  • 适用场景:反射填充尤其适用于处理三维数据,如医学图像、视频处理等领域。

在数学公式中,D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的深度(D_out)、高度(H_out)和宽度(W_out)是如何基于输入的深度(D_in)、高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ReplicationPad1d

torch.nn.ReplicationPad1d 是 PyTorch 框架中用于一维数据的填充类,它通过复制输入边界的值来进行填充。这种填充方式在处理一维序列数据(如时间序列、音频信号等)时非常有用,尤其是在进行卷积操作时需要保持数据长度不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个二元组(tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是二元组,它表示左右两边的填充大小,格式为 (padding_left, padding_right)

形状(Shape):

  • 输入:其形状可以是 (C, W_in)(N, C, W_in),其中 C 是通道数,W_in 是输入宽度,N 是批大小(如果有的话)。
  • 输出:形状为 (C, W_out)(N, C, W_out),其中 W_out = W_in + padding_left + padding_right。这里的 W_out 是填充后的宽度。

使用示例:

  1. 基本使用:如果使用 nn.ReplicationPad1d(2),这意味着在输入张量的每一边添加两个单位的复制填充。

m = nn.ReplicationPad1d(2)
input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
output = m(input)

 这将在输入张量的左右两侧分别添加两个单位的复制填充。

   2. 使用不同的填充大小:你可以通过传递一个二元组来为左右两边设置不同的填充大小,比如 nn.ReplicationPad1d((3, 1))

m = nn.ReplicationPad1d((3, 1))
output = m(input)

这将在输入张量的左边添加三个单位,右边添加一个单位的复制填充。

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:由于复制填充是通过重复边缘值实现的,因此在某些情况下可能会引入不希望的效果,特别是在边缘值与邻近数据差异较大时。
  • 使用场景:复制填充在处理一维数据时特别有用,因为它在填充时尽可能保持了数据的局部特性。

在数学公式中,W_out = W_in + padding_left + padding_right 描述了输出宽度(W_out)是如何根据输入宽度(W_in)以及左右两侧的填充大小计算出来的。

nn.ReplicationPad2d

torch.nn.ReplicationPad2d 是 PyTorch 框架中用于二维数据的填充类,它通过复制输入边界的值来进行填充。这种填充方式在处理图像或其他二维数据时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个四元组(4-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是四元组,它表示四个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom)

形状(Shape):

  • 输入:其形状可以是 (N, C, H_in, W_in)(C, H_in, W_in),其中 N 是批大小,C 是通道数,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, H_out, W_out)(C, H_out, W_out),其中 H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 H_outW_out 分别是填充后的高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ReplicationPad2d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ReplicationPad2d(2)
input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
output_same_padding = m_same_padding(input)# 使用不同的填充大小
m_different_padding = nn.ReplicationPad2d((1, 1, 2, 0))
output_different_padding = m_different_padding(input)# 打印输出
print("Output with same padding on all sides:\n", output_same_padding)
print("\nOutput with different padding:\n", output_different_padding)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:由于复制填充是通过重复边缘值实现的,因此在某些情况下可能会引入不希望的效果,特别是在边缘值与邻近数据差异较大时。
  • 使用场景:复制填充在处理二维数据时特别有用,因为它在填充时尽可能保持了数据的局部特性。

在数学公式中,H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的高度(H_out)和宽度(W_out)是如何基于输入的高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ReplicationPad3d

torch.nn.ReplicationPad3d 是 PyTorch 框架中用于三维数据的填充类,它通过复制输入边界的值来进行填充。这种填充方式在处理三维数据(如体积数据、三维图像)时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个六元组(6-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是六元组,它表示六个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back)

形状(Shape):

  • 输入:其形状可以是 (N, C, D_in, H_in, W_in)(C, D_in, H_in, W_in),其中 N 是批大小,C 是通道数,D_in 是输入深度,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, D_out, H_out, W_out)(C, D_out, H_out, W_out),其中 D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 D_outH_outW_out 分别是填充后的深度、高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ReplicationPad3d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ReplicationPad3d(3)
input = torch.randn(16, 3, 8, 320, 480)
output_same_padding = m_same_padding(input)# 使用不同的填充大小
m_different_padding = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
output_different_padding = m_different_padding(input)# 打印输出
print("Output with same padding on all sides:\n", output_same_padding.shape)
print("\nOutput with different padding:\n", output_different_padding.shape)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:由于复制填充是通过重复边缘值实现的,因此在某些情况下可能会引入不希望的效果,特别是在边缘值与邻近数据差异较大时。
  • 使用场景:复制填充在处理三维数据时特别有用,因为它在填充时尽可能保持了数据的局部特性。

在数学公式中,D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的深度(D_out)、高度(H_out)和宽度(W_out)是如何基于输入的深度(D_in)、高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ZeroPad1d 

torch.nn.ZeroPad1d 是 PyTorch 框架中用于一维数据的填充类,它通过在输入张量的边界添加零来进行填充。这种填充方式在处理一维序列数据(如时间序列、音频信号等)时非常有用,尤其是在进行卷积操作时需要保持数据长度不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个二元组(tuple)。如果是整数,它会在两边边界上应用相同的填充大小。如果是二元组,它表示左右两边的填充大小,格式为 (padding_left, padding_right)

形状(Shape):

  • 输入:其形状可以是 (C, W_in)(N, C, W_in),其中 C 是通道数,W_in 是输入宽度,N 是批大小(如果有的话)。
  • 输出:形状为 (C, W_out)(N, C, W_out),其中 W_out = W_in + padding_left + padding_right。这里的 W_out 是填充后的宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ZeroPad1d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ZeroPad1d(2)
input1 = torch.randn(1, 2, 4)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ZeroPad1d((3, 1))
input2 = torch.randn(1, 2, 3)
output2 = m_different_padding(input2)# 打印输出
print("Output with same padding on both sides:\n", output1)
print("\nOutput with different padding:\n", output2)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:零填充会在序列的边界添加零值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:零填充在处理一维数据时特别有用,尤其是在需要保持数据长度不变时。

在数学公式中,W_out = W_in + padding_left + padding_right 描述了输出宽度(W_out)是如何根据输入宽度(W_in)以及左右两侧的填充大小计算出来的。

nn.ZeroPad2d

torch.nn.ZeroPad2d 是 PyTorch 框架中用于二维数据的填充类,它通过在输入张量的边界添加零来进行填充。这种填充方式在处理图像或其他二维数据时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个四元组(4-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是四元组,它表示四个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom)

形状(Shape):

  • 输入:其形状可以是 (N, C, H_in, W_in)(C, H_in, W_in),其中 N 是批大小,C 是通道数,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, H_out, W_out)(C, H_out, W_out),其中 H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 H_outW_out 分别是填充后的高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ZeroPad2d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ZeroPad2d(2)
input1 = torch.randn(1, 1, 3, 3)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ZeroPad2d((1, 1, 2, 0))
input2 = torch.randn(1, 1, 3, 3)
output2 = m_different_padding(input2)# 打印输出
print("Output with same padding on all sides:\n", output1)
print("\nOutput with different padding:\n", output2)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:零填充会在图像的边界添加零值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:零填充在处理二维数据时特别有用,尤其是在需要保持数据尺寸不变时。

在数学公式中,H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的高度(H_out)和宽度(W_out)是如何基于输入的高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ZeroPad3d

torch.nn.ZeroPad3d 是 PyTorch 框架中用于三维数据的填充类,它通过在输入张量的边界添加零来进行填充。这种填充方式在处理三维数据(如体积数据、三维图像等)时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个六元组(6-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是六元组,它表示六个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back)

形状(Shape):

  • 输入:其形状可以是 (N, C, D_in, H_in, W_in)(C, D_in, H_in, W_in),其中 N 是批大小,C 是通道数,D_in 是输入深度,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, D_out, H_out, W_out)(C, D_out, H_out, W_out),其中 D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 D_outH_outW_out 分别是填充后的深度、高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ZeroPad3d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ZeroPad3d(3)
input1 = torch.randn(16, 3, 10, 20, 30)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ZeroPad3d((3, 3, 6, 6, 0, 1))
output2 = m_different_padding(input1)# 打印输出
print("Output with same padding on all sides:\n", output1.shape)
print("\nOutput with different padding:\n", output2.shape)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:零填充会在三维数据的边界添加零值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:零填充在处理三维数据时特别有用,尤其是在需要保持数据尺寸不变时。

在数学公式中,D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的深度(D_out)、高度(H_out)和宽度(W_out)是如何基于输入的深度(D_in)、高度(H_in)、宽度(W_in)以及各边的填充大小计算出来的。

nn.ConstantPad1d

torch.nn.ConstantPad1d 是 PyTorch 框架中用于一维数据的填充类,它通过在输入张量的边界添加一个常数值来进行填充。这种填充方式在处理一维序列数据(如时间序列、音频信号等)时非常有用,尤其是在进行卷积操作时需要保持数据长度不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个二元组(tuple)。如果是整数,它会在两边边界上应用相同的填充大小。如果是二元组,它表示左右两边的填充大小,格式为 (padding_left, padding_right)
  • value:填充的常数值。

形状(Shape):

  • 输入:其形状可以是 (C, W_in)(N, C, W_in),其中 C 是通道数,W_in 是输入宽度,N 是批大小(如果有的话)。
  • 输出:形状为 (C, W_out)(N, C, W_out),其中 W_out = W_in + padding_left + padding_right。这里的 W_out 是填充后的宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ConstantPad1d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ConstantPad1d(2, 3.5)
input1 = torch.randn(1, 2, 4)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ConstantPad1d((3, 1), 3.5)
input2 = torch.randn(1, 2, 3)
output2 = m_different_padding(input2)# 打印输出
print("Output with same padding on both sides:\n", output1)
print("\nOutput with different padding:\

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:常数填充会在序列的边界添加特定的常数值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:常数填充在处理一维数据时特别有用,尤其是在需要保持数据长度不变时。

在数学公式中,W_out = W_in + padding_left + padding_right 描述了输出宽度(W_out)是如何根据输入宽度(W_in)以及左右两侧的填充大小和填充值计算出来的。

nn.ConstantPad2d

torch.nn.ConstantPad2d 是 PyTorch 框架中用于二维数据的填充类,它通过在输入张量的边界添加一个常数值来进行填充。这种填充方式在处理图像或其他二维数据时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个四元组(4-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是四元组,它表示四个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom)
  • value:填充的常数值。

形状(Shape):

  • 输入:其形状可以是 (N, C, H_in, W_in)(C, H_in, W_in),其中 N 是批大小,C 是通道数,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, H_out, W_out)(C, H_out, W_out),其中 H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 H_outW_out 分别是填充后的高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ConstantPad2d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ConstantPad2d(2, 3.5)
input1 = torch.randn(1, 2, 2)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
output2 = m_different_padding(input1)# 打印输出
print("Output with same padding on all sides:\n", output1)
print("\nOutput with different padding:\n", output2)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:常数填充会在图像的边界添加特定的常数值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:常数填充在处理二维数据时特别有用,尤其是在需要保持数据尺寸不变时。

在数学公式中,H_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的高度(H_out)和宽度(W_out)是如何基于输入的高度(H_in)、宽度(W_in)以及各边的填充大小和填充值计算出来的。

nn.ConstantPad3d

torch.nn.ConstantPad3d 是 PyTorch 框架中用于三维数据的填充类,它通过在输入张量的边界添加一个常数值来进行填充。这种填充方式在处理三维数据(如体积数据、三维图像等)时非常有用,尤其是在进行卷积操作时需要保持数据尺寸不变的情况下。

参数说明:

  • padding:这个参数可以是一个整数或一个六元组(6-tuple)。如果是整数,它会在所有边界上应用相同的填充大小。如果是六元组,它表示六个边界的填充大小,格式为 (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back)
  • value:填充的常数值。

形状(Shape):

  • 输入:其形状可以是 (N, C, D_in, H_in, W_in)(C, D_in, H_in, W_in),其中 N 是批大小,C 是通道数,D_in 是输入深度,H_in 是输入高度,W_in 是输入宽度。
  • 输出:形状为 (N, C, D_out, H_out, W_out)(C, D_out, H_out, W_out),其中 D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right。这里的 D_outH_outW_out 分别是填充后的深度、高度和宽度。

使用示例:

以下是一个整合的示例,展示了如何使用 nn.ConstantPad3d,包括使用相同的填充大小和不同的填充大小两种情况:

import torch
import torch.nn as nn# 使用相同的填充大小
m_same_padding = nn.ConstantPad3d(3, 3.5)
input1 = torch.randn(16, 3, 10, 20, 30)
output1 = m_same_padding(input1)# 使用不同的填充大小
m_different_padding = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
output2 = m_different_padding(input1)# 打印输出
print("Output with same padding on all sides:\n", output1.shape)
print("\nOutput with different padding:\n", output2.shape)

注意事项:

  • 数据类型:确保输入数据的类型(如 float32)与你的模型其他部分一致。
  • 填充效果:常数填充会在三维数据的边界添加特定的常数值,这可能会对模型产生特定的影响,尤其是在模型需要解释边界信息时。
  • 使用场景:常数填充在处理三维数据时特别有用,尤其是在需要保持数据尺寸不变时。

在数学公式中,D_out = D_in + padding_front + padding_backH_out = H_in + padding_top + padding_bottomW_out = W_in + padding_left + padding_right 描述了输出的深度(D_out)、高度(H_out)和宽度(W_out)是如何基于输入的深度(D_in)、高度(H_in)、宽度(W_in)以及各边的填充大小和填充值计算出来的。

总结

         本文详细介绍了 PyTorch 框架中的多个填充类,用于在深度学习模型中处理不同维度的数据。这些填充方法对于保持卷积神经网络中数据的空间维度至关重要,尤其在图像处理、音频信号处理等领域中有广泛应用。每种填充方法都有其特定的应用场景和注意事项,如数据类型一致性、边界效应的考虑等。文章通过具体的代码示例展示了如何在 PyTorch 中使用这些填充类,并解释了它们的工作原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/594702.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker小白第十一天

docker小白第十一天 dockerfile分析 Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本。即构建新镜像时会用到。 构建三步骤:编写dockerfile文件-docker build命令构建镜像-docker run镜像 运行容器实例。即一…

气缸功能块(SMART PLC梯形图代码)

有关气缸功能块的更多介绍,可以参考下面链接文章: https://rxxw-control.blog.csdn.net/article/details/125459568https://rxxw-control.blog.csdn.net/article/details/125459568CODESYS平台双通气缸功能块 https://rxxw-control.blog.csdn.net/article/details/12544822…

Linux 进程(七) 进程地址空间

虚拟地址/线性地址 学习c语言的时候我们经常会用到 “&” 符号,以及下面这张表,那么取出来的地址是否对应的是真实的物理地址呢?下面我们来写代码一步一步的验证。 从上面这张图不难看出,从正文代码,到命令行参数环…

Django Web 开发实战-实现用户管理系统(部门管理、用户管理、注册登录、文件上传)

简介 基于Django Python Web框架 MySQL Bootstrap 开发的用户管理系统。支持增删改查、模糊搜索、分页。 功能介绍 部门管理---》已完成 用户管理---》已完成 认证(注册/登录)---》开发中 数据统计---》待开发 文件上传---》待开发 效果图 部门…

Rust圣经 阅读 数值类型

基本类型 Rust 每个值都有其确切的数据类型,分为两类:基本类型和复合类型。 基本类型往往是一个最小化原子类型,无法解构为其它类型(一般意义上来说),由以下组成: 数值类型:有符号…

如何方便地管理多个SSH隧道:一次性解决远程数据库连接问题

在处理不对外开放端口的远程数据库时,SSH隧道是一种非常强大的工具。它不仅可以帮助我们安全地连接到这些数据库,还可以在不需要复杂配置的情况下,通过本地端口转发实现远程连接。但当我们需要同时管理多个隧道时,事情可能会变得复…

印象笔记03 衍生软件使用

印象笔记03 衍生软件使用 Verse 以下内容来源于官方介绍 VERSE是一款面向未来的智能化生产力工具,由印象笔记团队诚意推出。 你可以用VERSE: 管理数字内容,让信息有序高效运转;搭建知识体系,构建你的强大知识库&am…

SpringBoot之参数校验

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 SpringBoot之参数校验 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、参数校验的重要…

uniapp实现文字超出宽度自动滚动(在宽度范围之内不滚动、是否自动滚动、点击滚动暂停)

效果如下: 文字滚动 组件代码: <template><view class="tip" id="tip" @tap.stop="clickMove"><view class=

CMU15-445-Spring-2023-Project #0 - C++ Primer

前置任务。 Task #1 - Copy-On-Write Trie Copy-on-write (COW) Trie 在进行修改时&#xff0c;不会立即复制整个数据结构。相反&#xff0c;它会在需要修改的节点被多个引用的时候才进行复制。当要对某个节点进行写操作&#xff08;添加子节点或者继续向下insert&#xff09…

修改多选框el-checkbox样式, 大小,背景色

修改多选框el-checkbox样式, 大小,背景色 /* 背景透明 */ .el-checkbox__inner {background: transparent;border: 1px solid #00ffe5; } /* 选中样式 */ .el-checkbox__input.is-checked .el-checkbox__inner, .el-checkbox__input.is-indeterminate .el-checkbox__inner {b…

灸哥问答:分布式系统中数据一致性的问题如何解决

在分布式系统&#xff0c;数据一致性的问题是一个老生常谈&#xff0c;必须面对的一个问题&#xff0c;而且又极具挑战和复杂度的一个问题&#xff0c;针对数据一致性的问题&#xff0c;没有一个简单的单一的解决方案可以圆满解决&#xff0c;是需要结合具体的场景&#xff0c;…

人工智能技术在教育行业有哪些应用?

人工智能技术在教育行业有以下几个主要应用&#xff1a; 1. 个性化学习&#xff1a;人工智能可以根据学生的学习情况和特点&#xff0c;提供个性化的学习内容和教学方法。通过分析学生的学习数据和行为模式&#xff0c;AI 可以给予针对性的建议和反馈&#xff0c;帮助学生更好地…

环境准备-VMware安装

照顾到很多人不是很会环境搭建&#xff0c;我这里会将搭建的步骤讲的细致点 第一步&#xff0c;VMware下载。目的是通过VMware搭建Linux服务器&#xff0c;因为大家大部分还是Windows的电脑&#xff0c;我们先下载虚拟机搭建一个Linux系统的服务器 下载完成之后&#xff0c;点…

Java Synchronized 和 ReentrantLock

目录 介绍 synchronized synchronized 修饰实例方法 修饰静态类方法 synchronized 修饰代码块 实现细节 ReentrantLock ReentrantLock 基本使用 公平锁实现 读写锁&#xff08;ReentrantReadWriteLock&#xff09; 1. 创建读写锁对象&#xff1a; 2. 通过读写锁对象…

Open3D 点云分割之区域生长(Python版本,指定种子点)

文章目录 一、简介一、简介二、实现代码三、实现效果参考资料一、简介 一、简介 点云分割作为许多应用的前提,其直接会关乎到后续利用点云数据进行曲面重建、特征提取等处理的效果。区域生长算法做为一种较为经典的聚类分割算法,具有很广泛的应用,算法过程如下所述: 1、首…

38 调优kafka

操作系统调优 1.禁止atime更新&#xff0c;减少文件系统的写操作。 mount -o noatime 2.选择高性能的文件系统&#xff0c;如ext4或者XFS 3.swap空间设置&#xff0c;将swappniness设置成很小的一个值比如1&#xff5e;10&#xff0c;防止linux OOM Killer 开启随意杀掉进程。…

LeetCode 2807. 在链表中插入最大公约数

给你一个链表的头 head &#xff0c;每个结点包含一个整数值。 在相邻结点之间&#xff0c;请你插入一个新的结点&#xff0c;结点值为这两个相邻结点值的 最大公约数 。 请你返回插入之后的链表。 两个数的 最大公约数 是可以被两个数字整除的最大正整数。 示例 1&#xf…

Vue前端文字效果:如何让一段文本像是手动一个一个字打出来的

效果展示 自己做的AI聊天机器人界面&#xff0c;我觉得比微信还好看 由于这个前端略微复杂&#xff0c;下文用最简单的例子来展示&#xff1a; 分析需求 对于AI聊天工具的前端&#xff0c;如果AI生成的文本像是一个一个字打出来的&#xff0c;就会让AI看起来更像真的人&…

Python: 你所不知道的星号 * 用法

以下内容为本人的学习笔记&#xff0c;如需要转载&#xff0c;请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/FHyosiG_tegF5NRUEs7UdA 本文大概 1152 个字&#xff0c;阅读需花 6 分钟 内容不多&#xff0c;但也花了一些精力 如有余力&#xff0c;欢迎点赞…