基于混合蛙跳算法优化的Elman神经网络数据预测 - 附代码

基于混合蛙跳算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于混合蛙跳算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于混合蛙跳优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用混合蛙跳算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于混合蛙跳优化的Elman网络

混合蛙跳算法原理请参考:https://blog.csdn.net/u011835903/article/details/108294230

利用混合蛙跳算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

混合蛙跳参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 混合蛙跳相关参数设定
%% 定义混合蛙跳优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,混合蛙跳-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/594061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在pbootcms中制作静态化的TAG标签列表

如果你使用pbootcms来管理你的网站,你可能会遇到这样的需求:将TAG标签列表改成静态化的类似于栏目结构的需求。下面是实现这个需求的步骤。 步骤1 修改PHP文件 打开 apps/home/controller/ParserController.php 并找到大约在1852行左右的代码段&#x…

2024年测试岗最新自动化测试面试题整理,干货满满

一、接口测试 1、接口测试用例的编写要点有哪些?(问法二:接口测试用例设计需要考虑哪些方面?问法三:接口测试中有哪些要注意的测试点?) 1) 考虑输入参数和输出参数的合法性&#x…

SQL窗口函数大小详解

窗口大小 OVER 子句中的 frame_clause 选项用于指定一个滑动的窗口。窗口总是位于分区范围之内,是分区的一个子集。指定了窗口之后,分析函数不再基于分区进行计算,而是基于窗口内的数据进行计算。 指定窗口大小的语法如下: ROWS…

java进阶四-深入理解泛型和注解

泛型和注解是框架技术必备的技能 5 泛型5.1泛型理解5.1.1 泛型概念5.1.2 泛型的特点5.1.3 如何理解Java中的泛型是伪泛型?5.1.4 泛型的价值 5.2 泛型语法5.2.1 泛型类5.2.2 泛型接口3.2.3 泛型方法3.2.4泛型的上下边界3.2.5创建泛型数组 5.3泛型应用场景5.3.1数据库…

(七)独立按键

文章目录 独立按键原理图三行代码法简单概述代码书写键码推算如何使用短按键长按键 状态机法简单概述代码书写键码推算如何使用短按键长按键 现象 独立按键原理图 三行代码法 简单概述 代码书写 u8 Trg 0x00;//短按键 u8 Cont 0x00;//长按键 void BtnThree(void) {u8 reada…

CMake入门教程【核心篇】安装(install)

😈「CSDN主页」:传送门 😈「Bilibil首页」:传送门 😈「本文的内容」:CMake入门教程 😈「动动你的小手」:点赞👍收藏⭐️评论📝 文章目录 1. 概述2. 使用方法2…

如何从零开始搭建公司自动化测试框架?

一、为什么要搭建自动化测试框架 测试如果按照是否手工划分,可以分为“手工测试”和“自动化测试”。 “手工测试”也就是用人力来进行功能测试。相比自动化测试而言执行效率慢,可以进行探索性测试和发散性测试。 “自动化测试”主要是通过所开发的软…

Python控制程控电源(USB)

文章目录 前言一、环境搭建1.软件安装2.硬件安装二、设置程控电源连接方式三、Python代码四、验证结果五、pyd文件前言 随着智能电动汽车行业的持续发展,汽车电子或嵌入式设备在软硬件的测试中,都会使用程控电源供电,特别是自动化测试、压力测试场景必定使用到程控电源控制…

nifi详细介绍--一款开箱即用、功能强大可靠,可用于处理和分发数据的大数据组件

目录 目录 一、引言 二、NiFi 的历史背景介绍 三、NiFi 是什么? 核心特性 应用领域 四、NIFI 入门 五 、NiFi 工作流程 六、实际应用场景 七、优势总结 一、引言 NiFi(Apache NiFi),全名为“Niagara Files”&#xff0…

StratifiedGroupKFold解释和代码实现

StratifiedGroupKFold解释和代码实现 文章目录 一、StratifiedGroupKFold解释和代码实现是什么?二、 实验数据设置2.1 实验数据生成代码2.2 代码结果 三、实验代码3.1 实验代码3.2 实验结果3.3 结果解释 四、样本类别类别不平衡 一、StratifiedGroupKFold解释和代码…

Redis:原理速成+项目实战——初识Redis、Redis的安装及启动、Redis客户端

👨‍🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:首期文章 📚订阅专栏:Redis速成 希望文章对你们有所帮助 在此之前,我做过的项目里面也用到了…

利用深度学习图像识别技术实现教室人数识别

引言 在现代教育环境中,高效管理和监控教室成为了一个重要议题。随着人工智能技术的迅猛发展,特别是深度学习和图像识别领域的突破,我们现在可以通过智能系统来自动识别教室内的人数,从而实现更加智能化的教室管理。 深度学习与图…

LeetCode 84. 柱状图中最大的矩形

84. 柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights [2,1,5,6,2,3] 输出:10 解释…

Spring-IOC综述

文章迁移自语雀。 怎么查看spring的文档 ioc综述 说到spring的ioc,其实就是控制反转,为啥需要控制反转呢,其实是为了功能的增强,如果不用spring, 我们直接使用工厂方法,静态工厂方法, 都是是可以获取到对象的,但是如果需求变了,我们在类的生成时,添加了很多信息,使用工厂就不…

【鸿蒙杂谈①】——鸿蒙基础介绍及应用领域

1.前言 小伙伴们大家好,最近被复习整的痛苦无比,所以今天咱们了解 一点轻松的东西,至于高并发就先放放吧。好了,废话不多说,咱们进入正题。 相信小伙伴们都已经看到了最近鸿蒙的势头了,那鸿蒙究竟是怎么发…

《Linux C编程实战》笔记:实现自己的myshell

ok,考完试成功复活 这次是自己的shell命令程序的示例 流程图: 关键函数 1.void print_prompt() 函数说明:这个函数打印myshell提示符,即“myshell$$”. 2.void get_input(char *buf) 函数说明:获得一条指令&#…

Vue3-32-路由-重定向路由

什么是重定向 路由的重定向 :将匹配到的路由 【替换】 为另一个路由。 redirect : 重定向的关键字。 重定向的特点 1、重定向是路由的直接替换,路由的地址是直接改变的; 2、在没有子路由配置的情况下,重定向的路由可以省略 component 属性的配…

Langchain访问OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API

笔者曾经写过 ChatGPT OpenAI API请求限制 尝试解决 Account deactivated. Please contact us through our help center at help.openai.com if you need assistance. 结果如何? 没有啥用。目前发现一条曲线救国的方案。 1. 在官方 openai 库中使用 此处为最新Op…

全国计算机等级考试| 二级Python | 真题及解析(10)

一、选择题 1.要实现将实数型变量a的值保留三位小数,以下python可以实现的是( ) A.a%0.001 B.a//0.001 C.round(a,3) D.round(3,a) 2.在Python中要交换变量a和b中的值,应使用的语句组是( )。 A…

思科校园网搭建及配置综合小型实验

思科校园网搭建及配置综合小型实验 实验拓扑配置步骤配置聚合链路配置VTP,vlan域模板第一步 配置二层VLAN第二步 配置生成树第三步 配置相关IP地址第四步 配置DHCP及DHCP中继第五步 配置三层的网关冗余协议 双机热备及OSPF第六步 配置静态路由,NAT地址转换及其他配置…