【最优化方法】对称矩阵的对角化

文章目录

  • 正交化方法
    • 示例
  • 矩阵正交化

正交化方法

R n R^n Rn 中线性无关组 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an,令
β 1 = α 1 β 2 = α 2 − [ α 2 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 β 3 = α 3 − [ α 3 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − [ α 3 β 2 ] ∣ ∣ β 2 ∣ ∣ β 2 β n = α 3 − [ α n β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − ⋯ − [ α n β n − 1 ] ∣ ∣ β n − 1 ∣ ∣ β n − 1 \begin{aligned} & \beta_1 = \alpha_1 \\ & \beta_2 = \alpha_2 - {\frac{[\alpha_2\beta_1]}{||\beta_1||}} \beta_1 \\ & \beta_3 = \alpha_3 - {\frac{[\alpha_3\beta_1]}{||\beta_1||}} \beta_1 - {\frac{[\alpha_3\beta_2]}{||\beta_2||}} \beta_2 \\ & \beta_n = \alpha_3 - {\frac{[\alpha_n\beta_1]}{||\beta_1||}} \beta_1 - \cdots - {\frac{[\alpha_n\beta_{n-1}]}{||\beta_{n-1}||}} \beta_{n-1} \end{aligned} β1=α1β2=α2∣∣β1∣∣[α2β1]β1β3=α3∣∣β1∣∣[α3β1]β1∣∣β2∣∣[α3β2]β2βn=α3∣∣β1∣∣[αnβ1]β1∣∣βn1∣∣[αnβn1]βn1

该方法称为施密特正交化(Gram–Schmidt process

[ x , y ] [x, y] [x,y] 为向量的内积, ∣ ∣ x ∣ ∣ = [ x , x ] ||x||=[x,x] ∣∣x∣∣=[x,x]
[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x, y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n [x,y]=x1y1+x2y2++xnyn

示例

将向量组
α 1 = ( 1 , 1 , 0 , 0 ) T , α 2 = ( 1 , 0 , 1 , 0 ) T α 3 = ( − 1 , 0 , 0 , 1 ) T , α 4 = ( 1 , − 1 , − 1 , 1 ) T \begin{align} & \alpha_1=(1,1,0,0)^T,\alpha_2=(1,0,1,0)^T \\ & \alpha_3=(-1,0,0,1)^T,\alpha_4=(1,-1,-1,1)^T \\ \end{align} α1=(1,1,0,0)T,α2=(1,0,1,0)Tα3=(1,0,0,1)T,α4=(1,1,1,1)T

标准正交化

解: 先正交化
β 1 = ( 1 , 1 , 0 , 0 ) T β 2 = ( 1 , 0 , 1 , 0 ) T − 1 2 ( 1 , 1 , 0 , 0 ) T = 1 2 ( 1 , − 1 , 2 , 0 ) T β 3 = ( − 1 , 0 , 0 , 1 ) T + 1 2 ( 1 , 1 , 0 , 0 ) T + 1 6 ( 1 , − 1 , 2 , 0 ) T = 1 3 ( − 1 , 1 , 1 , 3 ) T β 4 = ( 1 , − 1 , − 1 , 1 ) T − 0 − 0 − 0 = ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 =(1,1,0,0)^T \\ & \beta_2 = (1,0,1,0)^T-\frac{1}{2}(1,1,0,0)^T = \frac{1}{2}(1,-1,2,0)^T \\ & \beta_3 = (-1,0,0,1)^T + \frac{1}{2}(1,1,0,0)^T + \frac{1}{6}(1,-1,2,0)^T = \frac{1}{3}(-1,1,1,3)^T \\ & \beta_4 = (1,-1,-1,1)^T-0-0-0=(1,-1,-1,1)^T \end{aligned} β1=(1,1,0,0)Tβ2=(1,0,1,0)T21(1,1,0,0)T=21(1,1,2,0)Tβ3=(1,0,0,1)T+21(1,1,0,0)T+61(1,1,2,0)T=31(1,1,1,3)Tβ4=(1,1,1,1)T000=(1,1,1,1)T

再标准化
β 1 = 1 2 ( 1 , 1 , 0 , 0 ) T β 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T β 3 = 1 2 3 ( − 1 , 1 , 1 , 3 ) T β 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & \beta_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & \beta_3 = \frac{1}{2\sqrt3} (-1,1,1,3)^T \\ & \beta_4 = \frac{1}{2} (1,-1,-1,1)^T \end{aligned} β1=2 1(1,1,0,0)Tβ2=6 1(1,1,2,0)Tβ3=23 1(1,1,1,3)Tβ4=21(1,1,1,1)T

矩阵正交化

A = ( 0 1 1 − 1 1 0 − 1 1 1 − 1 0 1 − 1 1 1 0 ) A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ \end{pmatrix} A= 0111101111011110

求一正交矩阵 P P P,使 P T A P P^{T}AP PTAP 成对角形。

解:
∣ A − λ E ∣ = ∣ − λ 1 1 − 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ∣ 1 − λ 1 − λ 1 − λ 1 − λ 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 0 − λ − 1 − 2 0 0 − 2 − λ − 1 0 0 2 2 1 − λ ∣ = ( 1 − λ ) 2 ( λ 2 + 2 λ − 3 ) = ( λ − 1 ) 3 ( λ + 3 ) \begin{aligned} & |A-\lambda E| ~=~ \begin{vmatrix}-\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ \begin{vmatrix} 1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} \\\\\\ & =~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -\lambda-1 & -2 & 0 \\ 0 & -2 & -\lambda-1 & 0 \\ 0 & 2 & 2 & 1-\lambda \\ \end{vmatrix} \\\\\\\ & =~ (1-\lambda)^2(\lambda^2+2\lambda-3) = (\lambda-1)^3(\lambda+3) \end{aligned}  AλE =  λ1111λ1111λ1111λ  =  1λ1111λλ111λ1λ11λ11λ = (1λ) 11111λ1111λ1111λ  = (1λ) 10001λ12212λ121001λ = (1λ)2(λ2+2λ3)=(λ1)3(λ+3)

求得 λ 1 = λ 2 = λ 3 = 1 , λ 4 = − 3 \large \lambda_1=\lambda_2=\lambda_3=1, \lambda_4=-3 λ1=λ2=λ3=1,λ4=3

λ 1 = 1 \lambda_1=1 λ1=1 (3重)带入齐次方程组,得
A − E = ( − 1 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 ) = ( 1 − 1 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) A - E = \begin{pmatrix}-1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\-1 & 1 & 1 & -1 \\ \end{pmatrix}= \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} AE= 1111111111111111 = 1000100010001000 { x 1 = x 2 + x 3 − x 4 x 2 = x 2 x 3 = x 3 x 4 = x 4 = > x 2 ( 1 1 0 0 ) + x 3 ( 1 0 1 0 ) + x 4 ( − 1 0 0 1 ) \begin{cases} x_1 = x_2 + x_3 - x_4 \\ x_2 = x_2 \\ x_3 = ~~~~~~~~~x_3 \\ x_4 = ~~~~~~~~~~~~~~~~~~x_4 \\ \end{cases} => x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+ x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} x1=x2+x3x4x2=x2x3=         x3x4=                  x4=>x2 1100 +x3 1010 +x4 1001

得出基础解系 ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3
ζ 1 = ( 1 1 0 0 ) , ζ 2 = ( 1 0 1 0 ) , ζ 3 = ( − 1 0 0 1 ) \zeta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \zeta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \zeta_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} ζ1= 1100 ,ζ2= 1010 ,ζ3= 1001

ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3 正交化 : 取 η 1 = ζ 1 \eta_1 = \zeta_1 η1=ζ1
η 2 = ζ 2 − [ η 1 , ζ 2 ] ∣ ∣ η 1 ∣ ∣ η 1 = ( 1 0 1 0 ) − 1 2 ( 1 1 0 0 ) = 1 2 ( 1 − 1 2 0 ) η 3 = ζ 3 − [ η 3 , ζ 1 ] ∣ ∣ η 1 ∣ ∣ η 1 − [ η 3 , ζ 2 ] ∣ ∣ η 2 ∣ ∣ η 2 = ( − 1 0 0 1 ) + 1 2 ( 1 1 0 0 ) + 1 6 ( 1 − 1 2 0 ) = 1 3 ( − 1 1 1 3 ) \begin{aligned} & \eta_2 = \zeta_2 - \frac{[\eta_1,\zeta_2]}{||\eta_1||}\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}- \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ & \eta_3 = \zeta_3 - \frac{[\eta_3,\zeta_1]}{||\eta_1||}\eta_1- \frac{[\eta_3,\zeta_2]}{||\eta_2||}\eta_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \end{aligned} η2=ζ2∣∣η1∣∣[η1,ζ2]η1= 1010 21 1100 =21 1120 η3=ζ3∣∣η1∣∣[η3,ζ1]η1∣∣η2∣∣[η3,ζ2]η2= 1001 +21 1100 +61 1120 =31 1113

η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3 单位化求得 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3
p 1 = 1 2 ( 1 , 1 , 0 , 0 ) T p 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T p 3 = 1 12 ( − 1 , 1 , 1 , 3 ) T \begin{aligned} & p_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & p_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & p_3 = \frac{1}{\sqrt{12}} (-1,1,1,3)^T \end{aligned} p1=2 1(1,1,0,0)Tp2=6 1(1,1,2,0)Tp3=12 1(1,1,1,3)T

λ 4 = − 3 \lambda_4=-3 λ4=3 带入齐次方程组,得
A + 3 E = ( 3 1 1 − 1 1 3 − 1 1 1 − 1 3 1 − 1 1 1 3 ) = ( 1 0 0 − 1 0 1 0 1 0 0 1 1 0 0 0 0 ) A + 3E = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\-1 & 1 & 1 & 3 \\ \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} A+3E= 3111131111311113 = 1000010000101110 { x 1 = x 4 x 2 = − x 4 x 3 = − x 4 x 4 = x 4 = > x 4 ( 1 − 1 − 1 1 ) \begin{cases} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \\ x_4 = x_4 \\ \end{cases} => x_4 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} x1=x4x2=x4x3=x4x4=x4=>x4 1111

得出基础解系 ζ 4 \zeta_4 ζ4
ζ 4 = ( 1 − 1 − 1 1 ) \zeta_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} ζ4= 1111

ζ 4 \zeta_4 ζ4 单位化,得 p 4 p_4 p4
p 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T p_4 = \frac{1}{2} (1,-1,-1,1)^T p4=21(1,1,1,1)T

p 1 , p 2 , p 3 , p 4 p_1,p_2,p_3,p_4 p1,p2,p3,p4 构成正交矩阵 P P P
P = ( p 1 , p 2 , p 3 , p 4 ) = ( 1 2 1 6 − 1 12 1 2 1 2 − 1 6 1 12 − 1 2 0 2 6 1 12 − 1 2 0 0 3 12 1 2 ) P = (p_1,p_2,p_3,p_4) = \begin{pmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt6} & -\frac{1}{\sqrt{12}} & \frac{1}{2} \\ \frac{1}{\sqrt2} & -\frac{1}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & 0 & \frac{3}{\sqrt{12}} & \frac{1}{2} \\ \end{pmatrix} P=(p1,p2,p3,p4)= 2 12 1006 16 16 2012 112 112 112 321212121


P T A P = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 − 3 ) P^{T}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ \end{pmatrix} PTAP= 1000010000100003

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oCPC实践录 | 目标ROI的出价与转化回传调控算法

这篇文章我们聊聊广告主在oCPC下,怎么调控自己的出价或者回传转化优化自己的ROI。 ROI是广告主最关心的指标了,根据oCPC出价的基本原理ocpc_bid pcvr * given_cpa * k, 广告主在整个出价中有两个可以控制的变量来影响出价,一个是直接的give…

NB-IoT BC260Y Open CPU SDK⑱ctlwm2m连接天翼物联CWing平台

NB-IoT BC260Y Open CPU SDK⑱ctlwm2m连接天翼物联CWing平台 1、平台介绍2、SDK支持CTLWM2M协议2、CTLWM2M API的使用3、软件设计1)、上报业务数据2)、上报报警事件3)、上报故障事件4)、接收平台数据并应答5)、根据唤醒模式触发不同的应用4、实例分析5、以下是调试的结果:…

Redis缓存穿透,缓存击穿,缓存雪崩

文章目录 Redis缓存穿透,缓存击穿,缓存雪崩1. 缓存穿透1.1 解决方案1:缓存空数据1.2 解决方案2:使用布隆过滤器1.2.1 布隆过滤器介绍 2. 缓存击穿2.1 解决方案1:互斥锁2.2 解决方案2:逻辑过期 3. 缓存雪崩3…

NumPy 中级教程——随机数生成

Python NumPy 中级教程:随机数生成 在数据科学、机器学习和统计学等领域中,随机数生成是一个关键的操作。NumPy 提供了丰富的随机数生成功能,包括生成服从不同分布的随机数、设置随机种子等。在本篇博客中,我们将深入介绍 NumPy …

【漏洞复现】OpenSSH ProxyCommand命令注入漏洞(CVE-2023-51385)

文章目录 前言一、漏洞背景二、漏洞详情三、影响范围四、漏洞验证 前言 OpenSSH存在命令注入漏洞(CVE-2023-51385),攻击者可利用该漏洞注入恶意Shell字符导致命令注入。 一、漏洞背景 OpenSSH 是 SSH (Secure SHell&#xff09…

Oracle笔记-查看表已使用空间最大空间

目前以Oracle18c为例,主要是查这个表USER_SEGMENTS。 在 Oracle 18c 数据库中,USER_SEGMENTS 是一个系统表,用于存储当前用户(当前会话)拥有的所有段的信息。段是 Oracle 中分配存储空间的逻辑单位,用于存…

HTTP协议编程实战(二)实战二

使用析构函数主要是在里面关闭套接字(socket); waitForReadyRead()里面参数是毫秒,失败返回false; \r\n表示请求头部已经结束了,HTTP/1.1是版本号,200 ok表示请求响应成功 关闭的话就在前面加/

javaScript中的常用事件

文章目录 javaScript中什么是事件?基本原理javaScript中的时间使用1,窗口事件1.1、onblur1.2、onfocus1.3、onload1.4、onresize 2,表单事件2.1、onchange2.2、**oninput**2.3、oninvalid2.4、onselect2.5、onsubmit 3,键盘事件3.…

国科大图像处理2023速通期末——汇总2017-2019

国科大2023.12.28图像处理0854期末重点 图像处理 王伟强 作业 课件 资料 一、填空 一个阴极射线管它的输入与输出满足 s r 2 sr^{2} sr2,这将使得显示系统产生比希望的效果更暗的图像,此时伽马校正通常在信号进入显示器前被进行预处理,令p…

记录爬虫编写步骤

本文讲解 Python 爬虫实战案例:抓取百度贴吧(https://tieba.baidu.com/)页面,比如 Python爬虫吧、编程吧,只抓取贴吧的前 5 个页面即可。今天一个毕业学生问到一个问题:不清楚编写爬虫的步骤,不…

TF-IDF(Term Frequency-Inverse Document Frequency)算法 简介

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的常用算法。它用于评估一个词对于一个文档集合中某个文档的重要性。 这个算法的基本思想是:如果一个词在一个文档中频繁出现,并且在整个文档集合…

计算机网络第一课

先了解层级: 传输的信息称为协议数据单元(PDU),PDU在每个层次的称呼都不同,见下图:

我的CSDN 512天创作者纪念日总结:高效、高现

文章目录 512天创作者纪念日:2023年的12月31日CSDN的512天消息提醒第一篇文章,最后一篇文章总计847篇文章,每月发文分布512天,各专栏文章统计512天,互动总成绩 512天创作者纪念日:2023年的12月31日 2023年…

我最喜欢的趣味几何书-读书笔记

我最喜欢的趣味几何书-读书笔记 1、利用阴影的长度来测量 公元前6世纪,古希腊哲学家泰勒思为了测量金字塔,想到了这样的方法:选择了一个特殊的时间,在那个时间,他自身的影子长度刚好跟他的身高相等。此时&#xff0c…

LeetCode 2706. 购买两块巧克力【数组,一次遍历】1207

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

【并发设计模式】聊聊Thread-Per-Message与Worker-Thread模式

在并发编程中,核心就是同步、互斥、分工。 同步是多个线程之间按照一定的顺序进行执行,比如A执行完,B在执行。而互斥是多个线程之间对于共享资源的互斥。两个侧重点不一样,同步关注的是执行顺序,互斥关注的是资源的排…

腾讯云轻量应用服务器详细介绍_2024年更新

腾讯云轻量应用服务器开箱即用、运维简单的轻量级云服务器,CPU内存带宽配置高并且价格特别便宜,大带宽,但是限制月流量。轻量2核2G3M带宽62元一年、2核2G4M优惠价118元一年,540元三年、2核4G5M带宽218元一年,756元3年、…

pyqt5用qtdesign设计页面时,去掉页面的空白界面、边框和标题栏

前言 Windows默认的标题栏有时候自己觉得不太美观,就想自己设计一个,然后把默认的去掉,并且把长方形的边框和多余的空表界面去掉,就是下图中圈出来的区域: 去掉之后的效果如图: 这样我们就可以自定义窗…

bash 变量作用域

在shell 编程中,对 bash 变量作用域的理解是非常重要的,特别是在某些函数会被多次调用的情况,如果在函数中定义的是全局变量,就会导致下一次调用的时候,出现错误的逻辑的时候不容易发现。 bash的变量分成三种&#xff…

【排序算法】【二叉树】【滑动窗口】LeetCode220: 存在重复元素 III

作者推荐 【二叉树】【单调双向队列】LeetCode239:滑动窗口最大值 本文涉及的基础知识点 C算法&#xff1a;滑动窗口总结 题目 给你一个整数数组 nums 和两个整数 indexDiff 和 valueDiff 。 找出满足下述条件的下标对 (i, j)&#xff1a; i ! j, abs(i - j) < indexDi…