小梅哥Xilinx FPGA学习笔记18——专用时钟电路 PLL与时钟向导 IP

目录

一:IP核简介(具体可参考野火FPGA文档)

二: 章节导读

三:PLL电路原理

3.1 PLL基本实现框图

3.2 PLL倍频实现

3.3 PLL分频实现

四: 基于 PLL 的多时钟 LED 驱动设计

4.1 配置 Clocking Wizard 核

4.2 led 闪烁控制

4.2.1 LED闪烁代码设计

4.3 顶层模块代码设计

4.4 仿真测试文件

4.5 仿真结果

4.6 管脚约束文件

4.7 上板验证结果


一:IP核简介(具体可参考野火FPGA文档)

IP Intellectual Property)即知识产权, 简言而之,IP 即电 路功能模块。 IP 核在数字电路中常用于比较复杂的功能模块(如 FIFO RAM FIR 滤波 器、 SDRAM 控制器、 PCIE 接口等)设计成参数可修改的模块,让其他用户可以直接调用 这些模块。
IP 核有三种不同的存在形式:

HDL 语言形式---(软核)
        硬件描述语言;可进行参数调整、复用性强;布局、布线灵活;设计周期短、设计投入少
网表形式---(固核)
        完成了综合的功能块;可预布线特定信号或分配特定的布线资源。
版图形式---(硬核)
        硬核是完成提供设计的最终阶段产品-掩膜(Mask);缺乏灵活性、可移植性差;更易于实现IP核的保护。

IP核缺点:

  • IP核往往不能跨平台使用
  • IP核不透明,看不到内部核心代码
  • 定制IP需额外收费

二: 章节导读

       在 verilog 设计中,程序的运行往往都是围绕着时钟展开,越是复杂的设计往往会涉及越多不同的时钟。 而对于开发板来说,通常都只设计有一个晶振, 以 ACZ702 开发板的 PL 端为例,就板载了一个 50MHz 的有源晶振。通过开发板 内部逻辑,虽然能够基于该时钟分频倍频,产生不同频率的时钟,但是这些时 钟往往质量较差,并不适合应用。
       FPGA 厂商为了解决这个问题,会在器件内部加入专用的时钟电路,也就是 我们常说的锁相环(PLL)。通过该专用时钟电路分频倍频产生的时钟,不仅质 量好,精度也会更高。本章我们将带大家学习锁相环的工作机理,并结合 xilinx 提供的 clocking wizard 软核,通过一个简单的应用来带领大家熟悉锁 相环的基础使用方法。   

三:PLL电路原理

       锁相环(PLL Phase-Locked Loop ),是一种反馈控制电路,常常用于利用 外部输入的参考信号控制环路内部振荡信号的频率和相位。锁相环在工作时, 当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,因此得名锁相环。 PLL是最常用的IP核之一,其性能强大,可以对输入到FPGA的时钟信号进行 任意分频、倍频、相位调整、占空比调整,从而输出一个期望时钟。
锁相环通常由 下图 所示的架构组成:

其中,输入分频、输出分频、反馈分频为三个分频计数器,对时钟分频以满足需求。其余四个模块的功能分别如下:
  • 鉴相鉴频器 PFD(Phase Frequency Detector):对输入的基准信号(通常是来自频率稳定的晶振)和反馈回路的信号进行频率的比较,输出一个代表两者相位差异的信号。若相同则输出0 。参考时钟大于对比时钟频率会输出变大的成正比的值,小于就变小的成正比的值。
  • 电荷泵(CP): 根据 PFD 输出的信号,产生对应电压。
  • 环路滤波器 LF(Loop Filter): 用于控制噪声的带宽,滤掉高频噪声, 保留直流部分。
  • 压控振荡器 VCO(Voltage Controlled Oscillator): 根据滤波器输入的电压,输出对应频率的周期信号。环路滤波器输入的电压越大 VCO 输出 的频率越高,进而产生 N 倍于输入时钟的新时钟。
       其中,VCO 输出的时钟经过反馈分频后传回 PFD 这一电路我们称之为 反馈回路 PLL 在工作时,压控振荡器输出的时钟信号在经过反馈回路后输入到 PFD 中, PFD 会将其与输入的基准时钟比较,从而得到二者间的频率和相位差。 频率和相位差会以信号的方式输出,驱动 CP 产生电压,经过低通滤波后转换为 直流脉冲电压,作为 VCO 的控制电压,驱动 VCO 改变输出时钟。输出时钟又 会经由反馈回路,输入到 PFD 与基准时钟对比,如此往复,最终输出稳定的满足需求的时钟。
       因此,PLL 输出的时钟并不是由输入的基准时钟直接分频倍频得来,而是 基于基准时钟,通过内部的震荡电路生成新的时钟,再经由反馈电路将时钟环 回给 PFD ,通过不断将新产生的时钟与基准时钟作比较,最终输出频率和相位 稳定的时钟。 也正是因为如此,在使用 PLL 时,当基准时钟输入进 PLL 之后,我们并不 能立马得到输出时钟,即使得到也不能立马使用。因为此时的时钟还并不稳定, 需要等待一段时间之后,才能得到精确且稳定的时钟。

3.1 PLL基本实现框图

下图中鉴相鉴频器 PFD(Phase Frequency Detector)是用来比较输入参考信号与反馈信号的频率与相位的。最终它们会趋近于相同,及输出为0。

3.2 PLL倍频实现

       从下图可以看出倍频多出了一个DIV倍频环节,如果输入信号是50MHz的频率,因为鉴相鉴频器 PFD的两端最终归趋近于相等,则经过DIV之后的频率会变成50MHz。即如果是2倍频,则pll_out会变成100MHz输出。实现倍频输出。

3.3 PLL分频实现

       从下图可以看出分频多出了一个DIV分频环节放在输入信号那里,如果输入信号是50MHz的频率,如果分频器DIV是5倍分频,则输入PFD的频率是10M,因为鉴相鉴频器 PFD的两端最终归趋近于相等,则经过反馈回路输出的频率也为10MHz。则pll_out会变成10MHz输出。实现5分频输出。

四: 基于 PLL 的多时钟 LED 驱动设计

       本次设计我们将通过 PLL 产生 4 个不同的时钟,这四个时钟分为两个频率,同一频率之间的时钟在相位或占空比上存在差异。通过仿真,对比输出时钟波 形间的关系,验证 PLL 的基础功能。同时,为了验证 PLL 输出的时钟能否稳定 用于其他模块, PLL 输出的时钟还将被用于驱动 LED

4.1 配置 Clocking Wizard

       首先,通过 IP Catalog 为设计添加 clocking wizard 核。为了与大多数使用情况一致,本次设计使用的 PLL 结构,输入时钟使用的 50M 板载晶振,输出时钟 频率为常见的 100MHz 200MHz ,复位类型为低电平复位。因此, IP 核的时钟 配置界面如下图 所示:

为了观察输出时钟相位和占空比的变化,我们分别对 clk_out2 的相位和clk_out4 的占空比进行了修改,以方便仿真时对照波形。

4.2 led 闪烁控制

        基于“视觉暂留”现象,当人眼被中等强度的光刺激以后,人眼看到的图像会短暂停留 0.1~0.4 秒。而如果我们直接使用生成的时钟驱动 led 闪烁,其变 化速率便会远远超过人眼的识别速度,因此,我们需要设计一个分频计数模块, 对输入的时钟分频,控制 LED 的闪烁频率。

4.2.1 LED闪烁代码设计

module led_ctrl(input clk,input reset_n,output reg led);parameter MCNT = 1000_0000;reg [29:0]cnt;//led翻转计数逻辑always@(posedge clk or negedge reset_n)if(!reset_n)cnt <= 0;else if(cnt >= MCNT-1)    cnt <= 0;else cnt <= cnt + 1;always@(posedge clk or negedge reset_n)if(!reset_n)led <= 0;else if(cnt >= MCNT-1)    led <= ~led;else led <= led;       endmodule

4.3 顶层模块代码设计

module pll_led(input sys_clk,input reset_n,  output [3:0]led
);wire locked            ;wire clk_100m          ;wire clk_100m_s90      ;wire clk_200m          ;wire clk_200m_d20      ;led_ctrl #(.MCNT (5000_0000))led_ctrl_inst0(.clk        (clk_100m),.reset_n    (locked),//当locked信号为高电平时方可使用,其输出的才是稳定的时钟信号。.led        (led[0]));led_ctrl #(.MCNT (5000_0000))led_ctrl_inst1(.clk        (clk_100m_s90),.reset_n    (locked),.led        (led[1]));led_ctrl #(.MCNT (5000_0000))led_ctrl_inst2(.clk        (clk_200m),.reset_n    (locked),.led        (led[2]));led_ctrl #(.MCNT (5000_0000))led_ctrl_inst3(.clk         (clk_200m_d20),.reset_n     (locked),.led         (led[3]));clk_wiz_0 clk_wiz_0_inst(// Clock out ports.clk_100m(clk_100m),     // output clk_100m.clk_100m_s90(clk_100m_s90),     // output clk_100m_s90.clk_200m(clk_200m),     // output clk_200m.clk_200m_d20(clk_200m_d20),     // output clk_200m_d20// Status and control signals.resetn(reset_n), // input resetn.locked(locked),       // output locked// Clock in ports.sys_clk(sys_clk));      // input sys_clk
endmodule

4.4 仿真测试文件

`timescale 1ns / 1ps
module pll_led_tb();reg     sys_clk       ;
reg     reset_n       ;
wire    clk_100m      ;
wire    clk_100m_s90  ;
wire    clk_200m      ;
wire    clk_200m_d20  ;
wire    [3:0]led      ;pll_led pll_led(.sys_clk     (sys_clk)  ,.reset_n     (reset_n)  ,.clk_100m    (clk_100m)  ,.clk_100m_s90(clk_100m_s90)  ,.clk_200m    (clk_200m)  ,.clk_200m_d20(clk_200m_d20)  ,.led         (led)
);//重定义,缩短仿真时间defparam pll_led.led_ctrl_inst0.MCNT = 26'd500;defparam pll_led.led_ctrl_inst1.MCNT = 26'd500;defparam pll_led.led_ctrl_inst2.MCNT = 26'd500; defparam pll_led.led_ctrl_inst3.MCNT = 26'd500;initial sys_clk = 1'b1;always #10 sys_clk = ~sys_clk;initialbeginreset_n = 0;#201;reset_n = 1;#20000; $stop;endendmodule

4.5 仿真结果

4.6 管脚约束文件

set_property IOSTANDARD LVCMOS33 [get_ports reset_n]
set_property IOSTANDARD LVCMOS33 [get_ports sys_clk]
set_property IOSTANDARD LVCMOS33 [get_ports {led[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[0]}]
set_property PACKAGE_PIN U18 [get_ports sys_clk]
set_property PACKAGE_PIN F20 [get_ports reset_n]
set_property PACKAGE_PIN G17 [get_ports {led[0]}]
set_property PACKAGE_PIN G19 [get_ports {led[1]}]
set_property PACKAGE_PIN G18 [get_ports {led[3]}]
set_property PACKAGE_PIN G20 [get_ports {led[2]}]

4.7 上板验证结果

至此PLL的IP核调用实验完美成功。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/589567.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NXP实战笔记(二):S32K3xx基于RTD-SDK在S32DS上配置PIT与STM中断并反转IO

目录 1、PIT 1.1、PIT概述 1.2、PIT的配置 1.3、Dio配置 1.4、中断配置 1.5、测试代码 1.6、测试结果 2、STM 2.1、STM概述 2.2、STM的配置 2.3、测试代码 2.4、测试结果 1、PIT 1.1、PIT概述 PIT是一组定时器&#xff0c;可用于引发中断和触发器&#xff0c;包括一…

PyQt5-控件之QDialog(UI-业务分离搭建自定义xDialog)

1.继承QtWidgets.QWidget自定义对话框 继承于QtWidgets.QWidget自定义一个对话框类&#xff1a;SelectingDlg class SelectingDlg(QtWidgets.QWidget): def __init__(self): super(SelectingDlg, self).__init__() self.initUI() def initUI(self):s…

数据结构和算法-B+树(性质 查找)

文章目录 B树叶子节点B树的查找第一种查找方式第二种查找方式 小结 B树 B树节点的关键个数1B树该节点的子树个数 B树节点的关键字个数和节点的子树个数一样 叶子节点包含全部关键字&#xff0c;并且都相互链接了 叶子节点 根节点也能是叶子节点 B树的查找 第一种查找方式…

HTTP分数排行榜

HTTP分数排行榜 介绍一、创建数据库二、创建PHP脚本三、上传下载分数四、测试 介绍 Unity中向服务器发送用户名和得分&#xff0c;并存入数据库&#xff0c;再讲数据库中的得分按照降序的方式下载到Unity中。 一、创建数据库 首先&#xff0c;我们要在MySQL数据库中建立一个…

Adobe ColdFusion 文件读取漏洞(CVE-2010-2861)

漏洞原理 Adobe ColdFusion是美国Adobe公司的一款动态Web服务器产品&#xff0c;其运行的CFML&#xff08;ColdFusion Markup Language&#xff09;是针对Web应用的一种程序设计语言。由于AJP协议设计存在缺陷导致内部相关的属性可控&#xff0c;攻击者可以构造属性值&#xff…

.NET Core中灵活使用反射

前言 前段时间有朋友问道一个这样的问题&#xff0c;.NET Core中如何通过Attribute的元数据信息来调用标记的对应方法。我第一时间想到的就是通过C#反射获取带有Custom Attribute标记的类&#xff0c;然后通过依赖注入&#xff08;DI&#xff09;的方式获取对应服务的方法并通…

中小微医院机构云服务(云HIS)平台源码

云HIS&#xff08;Cloud-Based Healthcare Information System&#xff09;重新定义了HIS&#xff0c;目标是为中小型医疗卫生机构提供优质经济的医疗卫生信息化产品及服务&#xff1b;是以健康档案为主线、以电子病历为核心、以云计算技术为基础的医疗卫生系统。云HIS作为基于…

王道考研计算机组成原理——存储系统

存储系统的基础知识 微信打开的时候会有一个人站在地球上&#xff0c;这个过程就是把程序从辅存转移到主存&#xff0c;数据只有调入主存当中才可以被CPU访问 cache&#xff1a;主存速度还是慢&#xff0c;为了进一步缓解CPU和主存之间的速度矛盾 在微信打视频聊天的时候&am…

Git 常用命令(从远程gitee/GitCode/GitHub下载项目到本地仓库)

​分布式项目控制管理gitGit 分布式版本控制系统(序章1)windows和linux操作Git(序章2) git在windows和ubuntu操作命令无异。本次举例平台&#xff1a;ubuntu18.04 查看是否安装和查看版本号 git --version # 仓库 # 在当前目录新建一个Git代码库$ git init​# 新建一个目录…

约翰瑟尔的故事

约翰瑟尔的故事 你即将看到的是“瑟尔效能机”创始者&#xff0c;约翰瑟尔的故事 据瑟尔原话&#xff0c;该装置会是通向自由能源的关键 “他”拥有“会飞”等不可思议的特性相关说法还有待证实&#xff0c;此记录篇仅为告知观者 制片方对瑟尔技术持中立态度 以下是我们所搜集…

【兔子王赠书第14期】《YOLO目标检测》涵盖众多目标检测框架,附赠源代码和全书彩图!

文章目录 写在前面YOLO目标检测推荐图书本书特色内容简介作者简介 推荐理由粉丝福利写在后面 写在前面 小伙伴们好久不见吖&#xff0c;本期博主给大家推荐一本关于YOLO目标检测的图书&#xff0c;该书侧重目标检测的基础知识&#xff0c;包含丰富的实践内容&#xff0c;是目标…

python编程从入门到实践(1)

文章目录 2.2.1命名的说明2.3字符串2.3.1使用方法修改字符串的大小写2.3.2 在字符串中使用变量2.3.3 制表符 和 换行符2.5.4删除空白2.5.5 删除前缀&#xff0b;后缀 2.2.1命名的说明 只能包含&#xff1a;字母&#xff0c;下划线&#xff0c;数字 必须&#xff1a;字母&#…

【LeetCode:34. 在排序数组中查找元素的第一个和最后一个位置 | 二分】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

Linux驱动学习—pinctl和gpio子系统

1、pinctl和gpio子系统&#xff08;一&#xff09; 1.1pinctrl 子系统主要工作内容 <1>获取设备树中 pin 信息&#xff0c;管理系统中所有的可以控制的 pin&#xff0c; 在系统初始化的时候&#xff0c; 枚举所有可以控制的 pin&#xff0c; 并标识这些 pin。 <2>…

【年度征文邀请,老题目新解法,描述我的一些编程心得】2023-12-30

缘由本论坛年度征文邀请 之前论坛给的一个笔耕不辍实体已经给后辈玩了&#xff0c;那波浪上的孙猴儿会随波逐流摇来晃去的&#xff0c;后辈挺喜欢的。 前几天回复了一个整数正序分解&#xff0c;虽说是老话题了&#xff0c;不过常有新想法&#xff0c;其实整数正序分解整合不…

计算机网络物理层 习题答案及解析

2-1 下列选项中&#xff0c;不属于物理层接口规范定义范畴的是&#xff08; D &#xff09;。 A. 引脚功能 B. 接口形状 C. 信号电平 D. 传输媒体 【答案】D 【解析】 2-2 某网络在物理层规定&#xff0c;信号的电平范围为- 15V~15V &#xff0c; 电线长…

js 对象

js 对象定义 <!DOCTYPE html> <html> <body><h1>JavaScript 对象创建</h1><p id"demo1"></p> <p>new</p> <p id"demo"></p><script> // 创建对象&#xff1a; var persona {fi…

CSS 丝带形状效果

CSS 丝带形状效果如图&#xff1a; 通过CSS创建折叠丝带形状 这里代码应该比较清晰易懂&#xff0c;clip-path 的值应该也容易理解。要注意的是&#xff0c;我们使用了 color-mix() 函数&#xff0c;这个属性允许创建主颜色的深色版本。现在如果我们将元素旋转相反的方向&#…

「Kafka」生产者篇

「Kafka」生产者篇 生产者发送消息流程 在消息发送的过程中&#xff0c;涉及到了 两个线程 ——main 线程和Sender 线程。 在 main 线程中创建了 一个 双端队列 RecordAccumulator。 main线程将消息发送给RecordAccumulator&#xff0c;Sender线程不断从 RecordAccumulator…

使用STM32 HAL库实现RS232串口通信的步骤和技巧

本文将介绍如何使用STM32 HAL库来实现RS232串口通信&#xff0c;包括步骤、API函数的调用方法和一些技巧。具体将讨论串口配置、发送和接收数据的方法&#xff0c;并提供相关示例代码。 引言&#xff1a; STM32 HAL库为嵌入式系统提供了简化和标准化的编程接口&#xff0c;方便…