Linux驱动学习—pinctl和gpio子系统

1、pinctl和gpio子系统(一)

1.1pinctrl 子系统主要工作内容

<1>获取设备树中 pin 信息,管理系统中所有的可以控制的 pin, 在系统初始化的时候, 枚举所有可以控制的 pin, 并标识这些 pin。
<2>根据获取到的 pin 信息来设置 pin 的复用功能,对于 SOC 而言, 其引脚除了配置成普通的 GPIO 之外,若干个引脚还可以组成一个 pin group, 形成特定的功能。
<3>根据获取到的 pin 信息来设置 pin 的电气特性,比如上/下拉、速度、驱动能力等。

对应使用者来说,只需要在设备树里面设置好某个 pin 的相关属性即可,其他的初始化工作均由 pinctrl 子系统来完成。

1.2gpio子系统主要工作内容

当使用 pinctrl 子系统将引脚的复用设置为 GPIO,可以使用 GPIO 子系统来操作GPIO,Linux 内核提供了 pinctrl 子系统和 gpio 子系统用于 GPIO 驱动。

通过 GPIO 子系统功能要实现:

<1>引脚功能的配置(设置为 GPIO,GPIO 的方向, 输入输出模式,读取/设置 GPIO 的值)
<2>实现软硬件的分离(分离出硬件差异, 有厂商提供的底层支持; 软件分层。 驱动只需要调用接口 API 即可操作 GPIO)
<3>iommu 内存管理(直接调用宏即可操作 GPIO)

gpio 子系统的主要目的就是方便驱动开发者使用 gpio,驱动开发者在设备树中添加 gpio 相关信息,然后就可以在驱动程序中使用 gpio 子系统提供的 API函数来操作 GPIO, Linux 内核向驱动开发者屏蔽掉了 GPIO 的设置过程,极大的方便了驱动开发者使用 GPIO。

1.3 不同soc厂家的pin contrller的节点

这些节点都是把某些引脚复用成功能。

1.4 不同soc厂家的pin contrller的节点里面的属性都是什么意思

可以通过在Documentation/devicetree/bindings/下的txt文档查看。

1.5 怎么在代码中使用pin contrller里面定义好的节点?

例1:

pinctrl-names = "default";//设备的状态,可以有多种状态,default为状态0
pinctrl-0 = <&pinctrl_hog_1>;/*第0个状态所对应的引脚配置,也就是default状态对应的引脚在pin controller里面定义好的节点pinctrl_hog_1里面的管脚配置。*/

例2:

pinctrl-names = "default","wake up";//设备的状态,可以有多种状态,default为状态0,wake up为状态1,
pinctrl-0 = <&pinctrl_hog_1>;/*第0个状态所对应的引脚配置,也就是default状态对应的引脚在pin controller里面定义好的节点pinctrl_hog_1里面的管脚配置。*/
pinctrl-1 = <&pinctrl_hog_2>;/*第1个状态所对应的引脚配置,也就是default状态对应的引脚在pin controller里面定义好的节点pinctrl_hog_2里面的管脚配置。*/

例3:

pinctrl-names = "default";//设备的状态,可以有多种状态,default为状态0,wake up为状态1,
pinctrl-0 = <&pinctrl_hog_1   &pinctrl_hog_2>;/*第0个状态所对应的引脚配置,也就是default状态对应的引脚在pin controller里面定义好的节点pinctrl_hog_1和pinctrl_hog_2这两个节点的管脚配置。*/

1.6 总结

总结:之前控制引脚的方法都是操作配置寄存器:

现在可以不用这种方法,linux有现成的框架,这个框架就是pinctl子系统和gpio子系统,可以pinctl子系统设置引脚的复用功能,设置引脚的电气属性。

2、pinctl和gpio子系统(二)

上一个小节我们学习了pinctrl子系统,Linux内核提供了pinctrl子系统和gpio子系统用于GPIO驱动,当然pinctrl子系统负责不仅仅是GPIO的驱动,而是所有pin脚配置。pinctrl子系统是随着设备树的加入而加入的,依赖设备树。GPIO子系统在之前的内核也是存在的,但是pinctrl子系统的加入使得GPIO子系统有很大的改变。

在以前的内核版本中,如果要配置GPIO的话一般要使用SOC厂家实现的配置函数,例如三星的配置函数s3c_gpio_cfgpin等,这样带来的问题就是各家有个家的接口函数与是实现方式,不但内核的代码复用率低而且开发者很难记住这么多的函数,如果要使用多种平台的话背函数都是很麻烦的,所以在引入设备树后对GPIO子系统进行大的改造,使用设备树来实现并提供统一的接口。通过GPIO子系统功能主要实现引脚功能的配置,如设置为GPIO,特殊功能,GPIO的方向,设置为中断等。

那么我们先来看一下怎么在设备树中pinctrl和gpio子系统描述一个gpio。

2.1 设备树使用pinctrl和gpio子系统描述一个gpio

test1:test{#address-cells = <1>;#size-cells = <1>;compatible = "test";reg = <0x20ac000 0x00000004>;//描述数据寄存器的地址pinctrl-names = "default";pintrl-0 = <&pinctrl_test>;test-gpio = <gpio1 3 GPIO_ACTICE_LOW>;//gpio 表示第一组,3表示第一组第三个引脚,GPIO_ACTICE_LOW表示低电平
};

2.2 常用的gpio子系统提供的api函数

这些函数的定义在include\linux\gpio.h

2.2.1 gpio_request函数

作用: gpio_request函数用于申请一个gpio管脚。

int gpio_request(unsigned gpio, const char *label)
参数:
gpio:要申请的gpio标号,使用of_get_named_gpio函数从设备树获取指定的GPIO属性信息,此函数会返回这个GPIO标号。
label:给gpio设置个名字。
返回值:0,申请成功,其他值申请失败。
2.2.2 gpio_free函数

作用:如果不使用某个GPIO了,那么就可以调用gpio_free函数进行释放。

void gpio_free(unsigned gpio);
参数:
gpio:要释放的gpio标号。
返回值:无
2.2.3 gpio_direction_input函数

作用:此函数用于设置某个GPIO为输入。

int gpio_direction_input(unsigned gpio);
参数:
gpio:要设置为输入的GPIO标号。
返回值:0,设置成功,其他值设置失败。
2.2.4gpio_direction_output函数

作用:此函数用于设置某个GPIO为输出,并且设置默认输出值。

int gpio_direction_output(unsigned gpio, int value);
参数:
gpio:要设置为输出的GPIO标号。
value:GPIO默认输出值。
返回值:0,设置成功,设置失败返回负值。
2.2.5 gpio_get_value函数

作用:此函数用于获取某个GPIO的值(0或1)

int gpio_get_value(unsigned int gpio);
gpio:要获取的gpio标号
返回值:0,成功,失败返回负值。
2.2.5 gpio_set_value函数

作用:此函数用于获取某个GPIO的值(0或1)

void gpio_set_value(unsigned int gpio, int value);
gpio:要设置的gpio标号
value:要设置的值。
返回值:无。

2.3 总结

pinctl子系统的作用就是设置引脚的复用功能和电气属性。gpio子系统就是当pinctl子系统把引脚设置成GPIO功能以后就可以使用gpio子系统来操作我们引脚了,比如说设置输入、输出或者引脚的高低电平等等。

3、pinctl和gpio子系统(三)

pinctrl子系统就是设置引脚的复用关系和电气属性,gpio子系统就是当pinctrl把引脚设置成设置为gpio以后我们使用gpio子系统来操作gpio。

3.1 引脚的宏定义是在哪里找的

在arch/arm/boot/dts/imx6ul-pinfunc.h:

每个宏定义都对应一个管脚的复用功能。一个引脚有怎么多复用功能,但是只能使能一个,所以在设备树下需要检察是否有其他复用功能被使用,有就需要在设备树文件其他使用的地方注释掉:

3.2 实验

Linux驱动学习—设备树及设备树下的platform总线-CSDN博客

实现设备树学习中的7.3未实现的部分,即在probe函数注册一个杂项设备驱动用于对蜂鸣器的操作。这里对引脚的操作不是相之前一样对地址寄存器的操作实现gpio电平值的改变,而是通过gpio子系统的api函数是实现。

3.2.1 设备树文件修改

3.2.2 实验代码
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h> 
#include <linux/of.h>
#include <linux/of_address.h>
​
struct device_node *test_device_node;
struct property *test_node_property;
int size;
u32 out_values[2]={0};
const char *str=NULL;
unsigned int *vir_gpio_dr;
int beep_gpio = 0;
​
static const of_device_id of_match_table_test[] = {//匹配表{.compatible = "test1234"},
};
​
static const platform_device_id beep_id_table ={.name = "beep_test",
};
​
int misc_open(struct inode *inode, struct file *file)
{printk("misc_open\n");return 0;
}
​
int misc_release(struct inode *inode, struct file *file)
{printk("misc_relese\n");return 0;
}
​
ssize_t misc_read(struct file *file,char __user *ubuf, size_t size, loff_t *loff_t)
{char kbuf[64] = "heheh";if(copy_to_user(ubuf, kbuf, strlen(kbuf)) != 0) {printk("copy_to_user error\n");return -1;}return 0;
}
​
ssize_t misc_wirie(struct file *file,char __user *ubuf, size_t size, loff_t *loff_t)
{char kbuf[64] = {0};if(copy_form_user(kbuf, ubuf, strlen(kbuf)) != 0) {printk("copy_form_user error\n");return -1;}printk("kbuf is %s\n",kbuf);if(kbuf[0] == 1)get_set_value(beep_gpio, 1);else if(kbuf[0] == 0)get_set_value(beep_gpio, 0);return 0;
}
​
struct file_operations misc_fops = {.owner      = THIS_MODULE,.open       = misc_open,.release    = misc_release,.write      = misc_wirie,.read       = misc_read
};
​
struct miscdevice misc_dev = {.minor = MISC_DYNAMIC_MINOR,.name  = hello_misc,.fops  = &misc_fops
};
​
/*设备树节点compatible属性与of_match_table_test的compatible相匹配就会进入该函数,pdev是匹配成功后传入的设备树节点*/
int beep_probe(struct platform_device *pdev)
{int ret = 0;printk("beep_probe\n");//查找要查找的节点test_device_node = of_find_node_by_path("/test");if (test_device_node == NULL) {printk("test_device_node find error\n");return -1;}printk("test_device_node name is %s\n",test_device_node->name);//testbeep_gpio = of_get_named_gpio(test_device_node, "beep-gpio", 0);if (beep_gpio < 0) {printk("of_get_named_gpio error\n");return -1;}printk("beep_gpio name is %d\n",beep_gpio);ret = gpio_request(beep_gpio, "beep");if (ret < 0) {printk("gpio_request error\n");return -1;}ret = misc_register(&misc_dev);if (ret < 0) {printk("misc_register error\n");return -1;}return 0;
}
​
int beep_remove(struct platform_device *pdev)
{pritnk("beep_remove \n");return 0;
}
​
strcut platform_driver beep_device = {.probe = beep_probe,.remove = beep_remove,.driver = {.owner = THIS_MODULE,.name  = "123",.of_match_table = of_match_table_test,//匹配表 },.id_table = &beep_id_table,
};
​
static int beep_driver_init(void)
{int ret = -1;ret = platform_driver_register(&beep_device);if(ret < 0) {printk("platform_driver_register error \n");}printk("platform_driver_register ok\n");return 0;
}
​
static void  beep_driver_exit(void)
{platform_driver_unregister(&beep_device);printk("beep_driver_exit \n");
}
​
module_init(beep_driver_init);
module_exit(beep_driver_exit);
MODULE_LICENSE("GPL");

加载驱动,可以看到杂项设备节点生成,对这个设备节点写入1就表示引脚电平设置为高,,对这个设备节点写入0就表示引脚电平设置为低,

echo 1 > /dev/hello_misc
echo 0 > /dev/hello_misc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/589550.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【年度征文邀请,老题目新解法,描述我的一些编程心得】2023-12-30

缘由本论坛年度征文邀请 之前论坛给的一个笔耕不辍实体已经给后辈玩了&#xff0c;那波浪上的孙猴儿会随波逐流摇来晃去的&#xff0c;后辈挺喜欢的。 前几天回复了一个整数正序分解&#xff0c;虽说是老话题了&#xff0c;不过常有新想法&#xff0c;其实整数正序分解整合不…

计算机网络物理层 习题答案及解析

2-1 下列选项中&#xff0c;不属于物理层接口规范定义范畴的是&#xff08; D &#xff09;。 A. 引脚功能 B. 接口形状 C. 信号电平 D. 传输媒体 【答案】D 【解析】 2-2 某网络在物理层规定&#xff0c;信号的电平范围为- 15V~15V &#xff0c; 电线长…

js 对象

js 对象定义 <!DOCTYPE html> <html> <body><h1>JavaScript 对象创建</h1><p id"demo1"></p> <p>new</p> <p id"demo"></p><script> // 创建对象&#xff1a; var persona {fi…

CSS 丝带形状效果

CSS 丝带形状效果如图&#xff1a; 通过CSS创建折叠丝带形状 这里代码应该比较清晰易懂&#xff0c;clip-path 的值应该也容易理解。要注意的是&#xff0c;我们使用了 color-mix() 函数&#xff0c;这个属性允许创建主颜色的深色版本。现在如果我们将元素旋转相反的方向&#…

「Kafka」生产者篇

「Kafka」生产者篇 生产者发送消息流程 在消息发送的过程中&#xff0c;涉及到了 两个线程 ——main 线程和Sender 线程。 在 main 线程中创建了 一个 双端队列 RecordAccumulator。 main线程将消息发送给RecordAccumulator&#xff0c;Sender线程不断从 RecordAccumulator…

使用STM32 HAL库实现RS232串口通信的步骤和技巧

本文将介绍如何使用STM32 HAL库来实现RS232串口通信&#xff0c;包括步骤、API函数的调用方法和一些技巧。具体将讨论串口配置、发送和接收数据的方法&#xff0c;并提供相关示例代码。 引言&#xff1a; STM32 HAL库为嵌入式系统提供了简化和标准化的编程接口&#xff0c;方便…

什么是零日攻击?

1. 什么是零日漏洞 零日攻击是指利用零日漏洞对系统或软件应用发动的网络攻击。 零日漏洞也称零时差漏洞&#xff0c;通常是指还没有补丁的安全漏洞。由于零日漏洞的严重级别通常较高&#xff0c;所以零日攻击往往也具有很大的破坏性。目前&#xff0c;任何安全产品或解决方案…

chrome浏览器记录不住网站登录状态,退出后再打开就需要重新登陆的解决办法

chrome浏览器记录不住网站登录状态&#xff0c;退出后再打开就需要重新登陆&#xff0c;比较繁琐。 解决办法&#xff1a; 1、chrome浏览器右上角三个竖的点&#xff0c;然后进入“设置”&#xff08;Settings&#xff09;&#xff0c;选择“隐私与安全”&#xff08;Privacy…

【产品设计】信息建设三驾马车:PLM系统拆解

本篇文章将介绍PLM的基础信息、发展及模块功能等内容&#xff0c;让大家对PLM有一个全面、完整地了解&#xff0c;方便在后期的工作中能快速地使用其解决方案&#xff0c;希望本篇文章能对你有所帮助。 PLM系统主要实现产品模块业务&#xff0c;既包含产品的创意设计、样品打样…

vmware部署docker+springboot+MySQL(超详细)

一、前期准备 (一)安装jdk #docker search openjdk #docker pull openjdk:8 (二)确认网络 如果局域网其他终端(如手机访问),虚拟机网络连接需要选择《桥接》模式,而且,需要使用有线连接,不能使用Wi-Fi,切忌切忌! 并且要选择实际的那个有线连接。比如我这里是“R…

ArkTS - @Builder自定义构建函数

这个Builder作用就是可以把组件样式抽离出来&#xff0c;写成公共组件&#xff0c;下边记录下全局自定义构建函数用法及注意的地方。 官方文档&#xff1a;开发者可以将重复使用的UI元素抽象成一个方法&#xff0c;在build方法里调用。 一、用法 下边代码&#xff0c;我在Co…

5 个顶级的免费磁盘分区软件工具评测分享

磁盘分区可能是一个脆弱而复杂的过程&#xff0c;磁盘崩溃或用户设备受到病毒攻击的风险很高。因此&#xff0c;它们很难由用户单独或手动管理。本文详细介绍了可以帮助简化磁盘分区过程的不同软件工具、它们的功能和优点。那么让我们开始吧。 什么是磁盘分区工具&#xff1f;…

CSS 纵向顶部往下动画

<template><div class"container" mouseenter"startAnimation" mouseleave"stopAnimation"><!-- 旋方块 --><div class"box" :class"{ scale-up-ver-top: isAnimating }"><!-- 元素内容 -->&…

vue3(十)-基础入门之Swiper轮播与自定义指令

一、Swiper html : 注意&#xff1a; class“swiper-wrapper”、class“swiper-slide” 等类名不能写错 <body><!-- 导入下载好的包或通过 CDN 导入vue、swiper.js、swiper.css --><!-- <script src"https://unpkg.com/vue3/dist/vue.global.js"&…

ROS安装PR2

一、PR2介绍 PR2是Willow Garage公司设计的机器人平台&#xff0c;也是目前科研领域经常用到的机器人之一。PR2有两条手臂&#xff0c;每条手臂七个关节&#xff0c;手臂末端是一个可以张合的夹爪&#xff1b;PR2依靠底部的四个轮子移动&#xff0c;在头部、胸部、肘部、夹爪上…

Java实现树结构(为前端实现级联菜单或者是下拉菜单接口)

Java实现树结构&#xff08;为前端实现级联菜单或者是下拉菜单接口&#xff09; 我们常常会遇到这样一个问题&#xff0c;就是前端要实现的样式是一个级联菜单或者是下拉树&#xff0c;如图 这样的数据接口是怎么实现的呢&#xff0c;是什么样子的呢&#xff1f; 我们可以看看 …

初始SpringBoot:详解特性和结构

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java项目分享》 《RabbitMQ》《Spring》《SpringMVC》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 前言一、SpringBoot…

[情商-2]:理解情商最关注的要素 - 情绪,情绪,情绪,不是事情本身,不是逻辑推理,不是讲道理

前言&#xff1a; 情商最关注的要素是情绪&#xff0c;他人的情形&#xff0c;自己的情绪&#xff0c;情绪是一个完全不同于技术人员经常关注的逻辑推理、问题解决。对于技术人员而言&#xff0c;它是一个完全不同的领域&#xff0c;有着不同的行为模式。 因此&#xff0c;在…

MySQL所有常见问题

一、事务 定义:一组操作要么全部成功,要么全部失败,目的是为了保证数据最终的一致性 在MySQL中,提供了一系列事务相关的命令: start transaction | begin | begin work:开启一个事务commit:提交一个事务rollback:回滚一个事务事务的ACID 原子性(Atomicity):当前事…

AI人工智能技术发现了拉斐尔名画背后的秘密:这幅画并非完全由大师本人完成

最近&#xff0c;一个先进的人工智能神经网络在拉斐尔的名画中发现了一个不寻常的地方&#xff1a;其中的一副面孔并非由拉斐尔本人绘制&#xff0c;而是出自其他艺术家之手。 详细文章网址链接&#xff1a;Deep transfer learning for visual analysis and attribution of pai…