基于被囊群算法优化的Elman神经网络数据预测 - 附代码

基于被囊群算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于被囊群算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于被囊群优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用被囊群算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于被囊群优化的Elman网络

被囊群算法原理请参考:https://blog.csdn.net/u011835903/article/details/107615961

利用被囊群算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

被囊群参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 被囊群相关参数设定
%% 定义被囊群优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,被囊群-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/589454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023-12-15 LeetCode每日一题(反转二叉树的奇数层)

2023-12-15每日一题 一、题目编号 2415. 反转二叉树的奇数层二、题目链接 点击跳转到题目位置 三、题目描述 给你一棵 完美 二叉树的根节点 root ,请你反转这棵树中每个 奇数 层的节点值。 例如,假设第 3 层的节点值是 [2,1,3,4,7,11,29,18] &…

lambda表达式和包装器

正文开始前给大家推荐个网站,前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 我们在使用库里的排序算法时如果排序的是自定义类型或者库里默认的排序不能满足我们则需求&…

【力扣100】46.全排列

添加链接描述 class Solution:def permute(self, nums: List[int]) -> List[List[int]]:# 思路是使用回溯if not nums:return []def dfs(path,depth,visited,res):# 出递归的条件是当当前的深度已经和nums的长度一样了,把path加入数组,然后出递归if …

HTML与CSS

目录 1、HTML简介 2、CSS简介 2.1选择器 2.1.1标签选择器 2.1.2类选择器 2.1.3层级选择器(后代选择器) 2.1.4id选择器 2.1.5组选择器 2.1.6伪类选择器 2.2样式属性 2.2.1布局常用样式属性 2.2.2文本常用样式属性 1、HTML简介 超文本标记语言HTML是一种标记语言&…

帆软报表如何灵活控制水印的显示

在帆软报表中如果要显示水印,如果要全部都要显示,只需要到决策系统--安装设置中打开水印开关。如果想要某个报表显示水印,可以在设计器的水印设置中为该报表设置水印。 但是如果碰到这种需求,比如某些人或者某些角色需要显示水印,其他人不显示。或者是预览报表需要显示水印…

[附代码]稳态视觉诱发电位SSVEP之预训练模型提高性能

SSVEP 之深度学习 深度学习已经被广泛运用在脑电信号分析来提高脑机接口的性能,这是一个end-to-end的方法,简单来说,只要搭建好深度学习网络,做好特征工程,然后分类即可,对于一个刚刚接触脑机接口领域深度学习的学习者来说,可以先忽略中间的数学相关的东西,先建一个网…

软件测试/测试开发丨Linux 数据处理三剑客学习笔记

一、Linux 三剑客之 grep 1、 内容检索 获取行(单行) grep pattern file获取内容 grep -o pattern file获取上下文 grep -A -B -C pattern file 2、 文件检索 递归搜索 grep pattern -r dir/展示匹配文件名 grep -H 111 /tmp/1只展示匹配文件名 grep …

HTML进阶

列表、表格、表单 文章目录 列表、表格、表单01-列表无序列表有序列表定义列表 02-表格表格结构标签-了解合并单元格 03-表单input 标签input 标签占位文本单选框上传文件多选框下拉菜单文本域label 标签按钮 04-语义化无语义的布局标签有语义的布局标签 05-字符实体 01-列表 …

影视后期:Pr 调色处理之风格调色

写在前面 整理一些影视后期相关学习笔记博文为 Pr 调色处理中风格调色,涉及下面几个Demo 好莱坞电影电影感调色复古港风调色赛博朋克风格调色日系小清晰调色 理解不足小伙伴帮忙指正 简单地说就是害怕向前迈进或者是不想真正地努力。不愿意为了改变自我而牺牲目前所…

软考网络工程师教程第五版(2018最新版)

软考网络工程师教程第五版(2018最新版) 内容简介 本书是全国计算机技术与软件专业技术资格(水平)考试指定用书。作者在前4版的基础上,根据网络工程师新版大纲的要求,针对考试的重点内容做了较大篇幅的修订,书中主要内容包括数据通信、广域通信网、局域网、城域网、因特网…

Python 创建第一个项目

打开pycharm编辑器 点击New Project创建一个新项目。 主要修改项目名和项目路径,其它保持默认,点击Create。 当编辑器创建好项目后,我们通过右键项目名,点击New,再点击Python File 创建一个Python文件。 写好文件名&a…

Motionface VoiceFocus使用教程

Motionface VoiceFocus使用教程 1:系统要求 软件运行支持32位/64位window 10/11系统, 其他要求无。 2:下载安装 链接:百度网盘 请输入提取码 提取码:1234 复制这段内容后打开百度网盘手机App,操作更方便哦 下载VoiceFo…

69.乐理基础-打拍子-大切分与变体

内容来源于:三分钟音乐社 前置内容:66.乐理基础-打拍子-小切分-CSDN博客 上一个内容:68.乐理基础-打拍子-大附点与变体-CSDN博客 大切分: 把每个小切分的每一个音符翻一倍就变成大切分了,小切分是两个十六分音符夹一…

08 通信协议之UART

引言: 从本文开始, 本个专题之后的几篇文章都是讲解嵌入式开发中几种常见的通信协议的, 比如UART, I2C,SPI, CAN总线这些我就不讲了, 没用到过, 学是学不完的, 等用到的时候再去学习…

什么情况下不应该使用 LockWindowUpdate ?

在之前的文章中,我们将了解了 LockWindowUpdate 应该在什么场景下使用,也就是拖动的场景。 今天,我们来看看 LockWindowUpdate 被误用的一些场景。 人们看到 LockWindowUpdate 的“您锁定的窗口将无法重新绘制自身”行为,并将其…

磁盘阵列(RAID)

1.独立硬盘冗余阵列(RAID, Redundant Array of Independent Disks) 旧称廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),简称磁盘阵列 用虚拟化存储技术把多个硬盘组合起来,成为一个或多个硬盘阵…

Spark魔力:招聘网站数据深度分析系统

Spark魔力:招聘网站数据深度分析系统 简介数据集技术栈功能特点创新点 简介 在本文中,我们将介绍一款基于Spark的招聘网站数据分析系统,该系统使用爬取的前程无忧招聘数据。通过结合Flask、Pandas、PySpark、以及MySQL等技术,实现…

大数据机器学习GAN:生成对抗网络GAN全维度介绍与实战

文章目录 大数据机器学习GAN:生成对抗网络GAN全维度介绍与实战一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2…

回顾 2023,展望 2024

by zhengkai.blog.csdn.net 项目与心得 今年最大的项目和心得,非GCP莫属,作为全球顶尖的云平台, GCP有他的优势,也有很多难用的地方。但是作为当时的一个strategic solution,我们的印度本地化项目必须使用GCP&#xf…

uni-app js语法

锋哥原创的uni-app视频教程: 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中...共计23条视频,包括:第1讲 uni…