基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《探索轻量级模型性能上限,基于GhostNet模型开发构建多商品细粒度图像识别系统》

《基于轻量级神经网络GhostNet开发构建的200种鸟类细粒度识别分析系统》

《基于MobileNet的轻量级卷积神经网络实现玉米螟虫不同阶段识别分析》

《基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验》

《python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统》

《基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统》

《python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统》

《基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统》

本文的核心思想是像基于GhostNet来开发构建生活场景下的生活垃圾图像识别系统,首先看下实例效果:

GhostNet 是一种轻量级卷积神经网络,是专门为移动设备上的应用而设计的。其主要构件是 Ghost 模块,一种新颖的即插即用模块。Ghost 模块设计的初衷是使用更少的参数来生成更多特征图 (generate more features by using fewer parameters)。

官方论文地址在这里,如下所示:

官方也开源了项目,地址在这里,如下所示:

可以详细阅读官方的代码实例即可,之后可以基于自己的数据集来开发构建模型即可。

这里给出GhostNet的核心实现部分,如下所示:

class GhostNet(nn.Module):def __init__(self, cfgs, num_classes=1000, width_mult=1.0):super(GhostNet, self).__init__()self.cfgs = cfgsoutput_channel = _make_divisible(16 * width_mult, 4)layers = [nn.Sequential(nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),)]input_channel = output_channelblock = GhostBottleneckfor k, exp_size, c, use_se, s in self.cfgs:output_channel = _make_divisible(c * width_mult, 4)hidden_channel = _make_divisible(exp_size * width_mult, 4)layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))input_channel = output_channelself.features = nn.Sequential(*layers)output_channel = _make_divisible(exp_size * width_mult, 4)self.squeeze = nn.Sequential(nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)input_channel = output_channeloutput_channel = 1280self.classifier = nn.Sequential(nn.Linear(input_channel, output_channel, bias=False),nn.BatchNorm1d(output_channel),nn.ReLU(inplace=True),nn.Dropout(0.2),nn.Linear(output_channel, num_classes),)self._initialize_weights()def forward(self, x, need_fea=False):if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.features):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xx = self.squeeze(x)return features, x.view(x.size(0), -1)else:x = self.features(x)x = self.squeeze(x)return x.view(x.size(0), -1)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def cam_layer(self):return self.features[-1]

简单看下数据集情况:

数据集分布可视化如下所示:

基于tsne算法实现了分布的可视化,可以清楚地看到:两类数据区分度还是很明显的。

整体模型训练识别的难度也是相对较低的,接下来看下loss走势:

acc曲线:

可以看到:模型的精度非常高了。

基于常用的数据增强算法来实现对原始图像数据的增强处理效果实例如下所示:

混淆矩阵如下:

感兴趣的话也都可以动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586705.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【用户增长】引言:浅析游戏运营用户增长概念

1 游戏发行运营中的主要职能: ​ 一、发行运营通识l 运营介绍:职能分工、发行运营流程、职业发展能力及要求l 品类认知:行业品类布局、品类用户画像、运营节奏及特性,包含不同品类核心打法及长线运营思路l 海外运营:海…

GO学习记录 —— 创建一个GO项目

文章目录 前言一、项目介绍二、目录介绍三、创建过程1.引入Gin框架、创建main2.加载配置文件3.连接MySQL、redis4.创建结构体5.错误处理、返回响应处理 前言 代码地址 下载地址:https://github.com/Lee-ZiMu/Golang-Init.git 一、项目介绍 1、使用Gin框架来创建项…

论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

论文链接:https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf Abstract 目标检测是指有效地找出图像中感兴趣的目标,然后准确地确定它们…

springboot 项目新建流程

一、新建工程 二、工程建好后&#xff0c;在pom文件中加入springboot 依赖 <dependencies><!--SpringBoot启动依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>&l…

python+django在线学习教学辅助作业系统gp6yp

本课题使用Python语言进行开发。基于web,代码层面的操作主要在PyCharm中进行&#xff0c;将系统所使用到的表以及数据存储到MySQL数据库中 技术栈 后端&#xff1a;pythondjango 前端&#xff1a;vue.jselementui 框架&#xff1a;django/flask Python版本&#xff1a;python3.…

RobotFrameWork环境搭建及使用

RF环境搭建 首先安装python并且配置python环境变量pip install robotframeworkpip install robotframework-ride 生产桌面快捷方式 不行换豆瓣源检查一下pip list RF类库和扩展库 标准库 按F5快捷键查询&#xff0c;可以看到rf自带的库不需要额外安装这些标准库在python的 …

DragonEnglish:COCA20000+单词+释义

去年的时候接触到了 COCA20000 单词&#xff0c;对这种给单词特定顺序的方式蛮感兴趣的。因为我当时接触的版本只有单词或者单词释义的版本&#xff0c;所以我直接通过各种方式给它搭配了音标例句发音&#xff0c;然后每100个切割成1份&#xff0c;分成了 202 个文件来学习&…

超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪

引言&#xff1a;在实际工程项目中&#xff0c;为了提高系统的响应速度和稳定性&#xff0c;往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉&#xff0c;仅采用简单的PID算法进行目标的跟随控制&#xff0c;目标的识别依然采用yolo。对系统要求更高的&#xff0c;可以对…

项目中使用Java中List.subList()的注意事项

使用介绍 在Java中&#xff0c;subList是List接口的一个方法&#xff0c;用于获取原始列表的子列表 方法的声明如下 List<E> subList(int fromIndex, int toIndex);fromIndex&#xff1a;起始索引&#xff08;包括&#xff09;toIndex&#xff1a;结束索引&#xff08…

Activemq存储KahaDb详解

引言 ActiveMQ在不提供持久化的情况下&#xff0c;数据保存在内存中&#xff0c;一旦应用崩溃或者重启之后&#xff0c;数据都将会丢失&#xff0c;这显然在大部分情况下是我们所不希望的。对此ActiveMQ提供了两种持久化方式以供选择。 kahaDB kahaDB是一个基于文件&#xf…

WPF+Halcon 培训项目实战(10):HS组件绘制图案

文章目录 前言相关链接项目专栏运行环境匹配图片模板匹配加载模板文件运行结果 绘制十字标 WPF HS组件绘制图像绘制和生成的区别 前言 为了更好地去学习WPFHalcon&#xff0c;我决定去报个班学一下。原因无非是想换个工作。相关的教学视频来源于下方的Up主的提供的教程。这里只…

元旦特辑:Note6---选择排序

目录 前言❌ 1. 基本思想⚠️ 2. 直接选择排序&#x1f7e2; 2.1 思路分析✳️ 2.2 代码实现❎ 2.2.1 sort.h 2.2.2 sort.c 2.2.3 test.c 2.3 问题解决❇️ 2.3.1 sort.c修改 2.4 特性总结✅ 3. 堆排序&#x1f535; 3.1 代码实现&#x1f3e7; 3.2 特性总结&…

神经元科技发布AI agent—“萨蔓莎”

今天神经元科技发布AI agent—“萨蔓莎“&#xff08;Samantha &#xff09;&#xff01; 取名“萨蔓莎”&#xff0c;是来自于一部讲述AI的电影《HER》。 电影讲述的是电影讲述男子西奥多汤布里&#xff08;Theodore Twombly&#xff0c;饰&#xff09;与拟人化萨曼莎&#…

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听&#xff0c;当对属性进行读取的时候&#xff0c;就会触发 getter&#xff0c;对属性进行设置的时候&#xff0c;就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…

如何正确使用docker搭建redis服务器,安装gcc和make以及出现错误时的解决办法

搭建redis服务器 目录 搭建redis服务器 &#xff08;1&#xff09;开启docker&#xff0c;并查看是否开启成功 &#xff08;2&#xff09;启动上面创建的ssrf容器&#xff0c;并进入ssrf容器 &#xff08;3&#xff09;进入opt&#xff0c;然后下载redis-5.0.5.tar.gz &a…

Apache SSI 远程命令执行漏洞

一、环境搭建 二、访问upload.php 三、写shell <!--#exec cmd"id" --> 四、访问 如图所示&#xff0c;即getshell成功&#xff01;​

Zookeeper-Zookeeper应用场景实战

1. Zookeeper Java客户端实战 ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。 可供选择的Java客户端API有&#xff1a; ZooKeeper官方的Java客户端API。 第三方的Java客户端API&#xff0c;比如Curator。 ZooKeeper官方的客户端API提供了基本的操作…

宝塔部署flask添加ssl即https

在宝塔部署flask的步骤我已经写了一篇博客:宝塔部署flask项目-CSDN博客 之前说如果出现找不到application错误: spawned uWSGI http 1 (pid: 3116) --- no python application found, check your startup logs for errors --- [pid: 3114|app: -1|req: -1/1] 127.0.0.1 () {6…

sklearn学习的一个例子用pycharm jupyter

环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…

QT 利用开源7z 实现解压各种压缩包,包括进度条和文件名的显示(zip,7z,rar,iso等50多种格式)

想做一个winRAR一样的解压软件吗?很简单,利用开源的7z库就能实现。我看网上其他人说的方法不敢苟同,误人子弟。以前自己在项目中使用过7z,这次又有需要,就想记录下来。如果你研究过如何用7z的话,一定知道7z的每一个GUID都代表了一种格式,50多种GUID也就有50多个格式,最…