神经元科技发布AI agent—“萨蔓莎”

今天神经元科技发布AI agent—“萨蔓莎“(Samantha )!

取名“萨蔓莎”,是来自于一部讲述AI的电影《HER》。

电影讲述的是电影讲述男子西奥多·汤布里(Theodore Twombly,饰)与拟人化萨曼莎(Samantha,斯嘉丽·约翰逊饰)之间的故事。

这个名字也暗示着神经元的ai agent“萨蔓莎”是一个具有科技含量且高度拟人化AI agent,

现在AI已然奔向下一个时代——AI Agent(智能体)

AI Agent---人工智能的下一个风口

在今年11月,比尔盖茨写了篇博客,主要阐述“个人AI Agent将如何彻底改变人们使用计算机的方式”。

那篇博文中,他明确写道,AI Agent将带来科技行业和社会的冲击波。

那么什么是Agent?Agent一词起源于拉丁语中的Agere,意思是“to do”。

在LLM语境下,Agent可以理解为某种能自主理解、规划决策、执行复杂任务的智能体。

与传统AI系统相比,AI Agent更加“智能”和“人性化”。它们不仅能理解复杂的自然语言指令,还能根据环境的变化做出自主决策。

而萨曼莎背后蕴含的技术力量,让她成为了具有智能和人性化的ai agent。

三大突破构筑“萨曼莎”的科技含量

在中国诞生的“萨曼莎”作为一款尖端的对话式聊天助手,与传统的人工智能不同AI Agents可以在没有人类控制的情况下独立运行。

萨曼莎可以给予用户意见、浏览网页、使用应用程序、读写文件、给出意见。

简单来说,只需要给她一个目标,萨曼莎就能完成剩下的全部工作。

为了让萨曼莎达到以上目标,神经元科技在研发过程中融合了多项先进的人工智能技术。

这些技术的应用使得“萨曼莎”具备三点突破性功能:

1、自然语言处理

首先自然语言处理(NLP)是“萨曼莎”能够理解人类核心技术之一,神经元基于最前沿的MoE架构模型,团队自主研发的算法在多轮对话记忆,意图理解,对话预测上达到行业领先水平。

    1. 在实际应用中,不同行业,公司,个人由于经验,产品及服务的差异,需要大模型能够根据自己产品卖点来与客户交流。 基于此,神经元智能团队,结合提示词工程(PE)及搜索增强技术(RAG),能为每个用户开放专属向量数据库, 通过调用专属知识库信息结合大语言模型的强大的理解总结等能力,规避了通用大模型回复太“泛泛而谈”的缺点,同时也解决了传统智能客服回答格式化,“答非所问”等问题。

    1. 意图理解和信息搜集自动化,传统数字服务和客户服务场景中,包括金融,游戏,教育,电商等,客户从认识-认知-信任-信赖的阶段,往往需要服务人员具备真诚耐心的态度,行业专业度,高情商等技能,"萨曼萨"的另一个重要功能是情感计算。它可以通过分析用户的语音、图像和文字,识别出用户的情绪,然后根据用户的情绪来调整自己的回应。例如,如果用户在对话框里打了一大长串字,表达了自己的不满,"萨曼萨"会首先判断出用户的情绪,然后再根据用户的情绪来给出回应。 除此以外,萨曼莎能够通过大模型底层算法,将意图和情绪等级标注打分,并将关键信息提炼总结,自动化采集,实时同步给服务人员及公司管理系统。
    2. 低成本: 在运算成本上,同时MoE架构对比主流的transformer模型大幅度降低至30%, 使萨曼莎在企业中部署成本降低至千元水平,个人版本低至百元。

  1. 采用多AI agent 协作技术

萨曼莎实现了对话中被动式回复及主动式引导混合交互模式。 区别于 chatgpt,文心一言等聊天框中单向回复的功能,通过Ai agent 技术--即群体智能的创新性协作流程,该聊天助手能够基于任务目标,将特定业务流程中用户的阶段状态拆分成多个待执行任务,并将执行任务分配给多个子任务agent, 比如:意图理解,情感分析,信息获取,链接发送,需求分析,质量检验,人工转接等等。 每一个子任务agent之间用自然语言的方式实时对话,高效协作。

  1. 中文拟人化聊天:

和电影里讲述的一样,萨曼莎是一位高度拟人的ai agent,能达到这一点的原因是是神经元智能采用了深度学习中RLHF(人类干预强化学习)技术,自研的RL(奖励模型)使“萨曼莎”能够自我优化其响应策略。

利用深度学习技术,它可以从大量的数据中发现模式,并据此改进对话流程和用户体验。

提示词工程和小样本,它可以迅速地实现根据顾问或客服的喜好训练聊天风格。

比如:律师咨询场景的专业严肃风格,游戏陪伴场景的二次元风格,教育咨询场景的耐心温柔风格。

它将规模化地处理用户个性化需求变为现实。

Ai agents的使命-成为人工智能技术与应用场景的桥梁

神经元科技判断,能否把价值传递到更多的应用场景,核心就看AI Agent。

在未来, "萨曼萨"的主要应用场景主要包括以下几个方面:

电商领域:在电商领域,"萨曼萨"可以通过判断用户的情绪和意图,使回复更具有人性化。

例如,当用户在对话框里打出一大长串字表达不满时,"萨曼萨"会首先判断出用户的情绪,然后再根据用户的情绪来给出回应。

金融行业:在金融行业,"萨曼萨"可以通过情感识别来决定如何与用户对话。例如,当用户在对话框里打出一大长串字表达不满时,"萨曼萨"会首先判断出用户的情绪,然后再根据用户的情绪来给出回应。

移动设备:"萨曼萨"的算法可以运行在手机、平板等移动设备上,甚至可以直接在摄像头的模组里使用,从而触达更多的手机用户。

情感计算:"萨曼萨"可以通过分析用户的语音、图像和文字,识别出用户的情绪,然后根据用户的情绪来调整自己的回应。以上是"萨曼萨"的主要应用场景,但实际上,作为一种聊天机器人,"萨曼萨"的应用场景可能会更广泛,包括但不限于客户服务、个人助手、教育、娱乐等多个领域。

神经元科技深耕六载,用优质产品争先2024年

神经元是一家从17年就专注于人工智能的创业公司。

在神经元深入ai agents的领域探索过程中,判断Agent下一步可能会朝着两个方向同时迭代。一是与人协助的智能体,通过执行各种任务来协助人类,侧重工具属性;二是拟人化方向的迭代,能够自主决策,具有长期记忆,具备一定的类人格特征,侧重于类人或超人属性。

我们希望把神经元打造成一个同时把用户和产品放在首位的公司。

因此,我们有动力让 AI 变得更好,并且把产品做得更好。这会使神经元走入良性循环。

神经元希望在未来每个人都可以拥有一群 AI agent,包括老师、朋友、治疗师和所有其他的角色,就像拥有一群 AI 朋友。他们每个人都知道你的名字,并且很高兴和你聊天,而他们都一个共同的名字—萨曼莎(Samantha )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586688.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听,当对属性进行读取的时候,就会触发 getter,对属性进行设置的时候,就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…

如何正确使用docker搭建redis服务器,安装gcc和make以及出现错误时的解决办法

搭建redis服务器 目录 搭建redis服务器 (1)开启docker,并查看是否开启成功 (2)启动上面创建的ssrf容器,并进入ssrf容器 (3)进入opt,然后下载redis-5.0.5.tar.gz &a…

Apache SSI 远程命令执行漏洞

一、环境搭建 二、访问upload.php 三、写shell <!--#exec cmd"id" --> 四、访问 如图所示&#xff0c;即getshell成功&#xff01;​

Zookeeper-Zookeeper应用场景实战

1. Zookeeper Java客户端实战 ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。 可供选择的Java客户端API有&#xff1a; ZooKeeper官方的Java客户端API。 第三方的Java客户端API&#xff0c;比如Curator。 ZooKeeper官方的客户端API提供了基本的操作…

宝塔部署flask添加ssl即https

在宝塔部署flask的步骤我已经写了一篇博客:宝塔部署flask项目-CSDN博客 之前说如果出现找不到application错误: spawned uWSGI http 1 (pid: 3116) --- no python application found, check your startup logs for errors --- [pid: 3114|app: -1|req: -1/1] 127.0.0.1 () {6…

sklearn学习的一个例子用pycharm jupyter

环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…

QT 利用开源7z 实现解压各种压缩包,包括进度条和文件名的显示(zip,7z,rar,iso等50多种格式)

想做一个winRAR一样的解压软件吗?很简单,利用开源的7z库就能实现。我看网上其他人说的方法不敢苟同,误人子弟。以前自己在项目中使用过7z,这次又有需要,就想记录下来。如果你研究过如何用7z的话,一定知道7z的每一个GUID都代表了一种格式,50多种GUID也就有50多个格式,最…

uniapp打包Android、Ios、微信小程序

首先我们需要在我们的代码中&#xff0c;把我们所要用到的配置信息配置好&#xff0c;在检查一下我们测试的内容是否有打开&#xff08;取消注释&#xff09;&#xff0c;在检查一下我们的版本信息是否正确&#xff0c;查看一下接口ip是否是正式线 这里的配置信息一定要配置好…

Screenshot-to-code开源项目mac上实践

github上的开源项目&#xff0c;看介绍可以将设计ui图片转换为 HTML 和 CSS 源码地址&#xff1a; GitCode - 开发者的代码家园 我的mac安装了2.7和3.11&#xff0c;就用3吧直接上代码 安装 pip3 install keras tensorflow pillow h5py jupyter 报错 ERROR: Could not in…

linux实用技巧:ubuntu18.04安装samba服务器实现局域网文件共享

Ubuntu安装配置Samba服务与Win10共享文件 Chapter1 Ubuntu18.04安装配置Samba服务与Win10共享文件一、什么是Samba二、安装Samba1、查看是否有安装samba2、安装samba 三、配置Samba服务1、创建共享目录&#xff08;以samba_workspaces为例&#xff09;2、为samba设置登录用户3、…

独立站的个性化定制:提升用户体验的关键

随着电子商务的竞争加剧&#xff0c;用户体验成为了企业赢得市场的关键因素之一。独立站作为企业品牌形象和产品展示的重要平台&#xff0c;其个性化定制的程度直接影响着用户体验。本文将探讨独立站的个性化定制如何提升用户体验&#xff0c;并通过代码示例说明实现个性化定制…

学习动态规划不同路径、最小路径和、打家劫舍、打家劫舍iii

学习动态规划|不同路径、最小路径和、打家劫舍、打家劫舍iii 62 不同路径 动态规划&#xff0c;dp[i][j]表示从左上角到(i,j)的路径数量dp[i][j] dp[i-1][j] dp[i][j-1] import java.util.Arrays;/*** 路径数量* 动态规划&#xff0c;dp[i][j]表示从左上角到(i,j)的路径数量…

计算机网络-动态路由

网络层协议&#xff1a;ip&#xff0c;ospf&#xff0c;rip&#xff0c;icmp共同组成网络层体系 ospf用于自治系统内部。 一个路由器或者网关需要能够支持多个不同的路由协议&#xff0c;以适应不同的网络环境。特别是在连接不同自治系统的边缘路由器或边界网关的情况下&#…

数据库原理与应用快速复习(期末急救)

文章目录 第一章数据库系统概述数据、数据库、数据库管理系统、数据定义、数据组织、存储和管理、数据操纵功能、数据库系统的构成数据管理功能、数据库管理的3个阶段以及特点数据库的特点、共享、独立、DBMS数据控制功能数据库的特点 数据模型两类数据模型、逻辑模型主要包括什…

2023 IoTDB Summit:天谋科技 CTO 乔嘉林《IoTDB 企业版 V1.3: 时序数据管理一站式解决方案》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…

(学习打卡1)重学Java设计模式之设计模式介绍

前言&#xff1a;听说有本很牛的关于Java设计模式的书——重学Java设计模式&#xff0c;然后买了(*^▽^*) 开始跟着小傅哥学Java设计模式吧&#xff0c;本文主要记录笔者的学习笔记和心得。 打卡&#xff01;打卡&#xff01; 设计模式介绍 一、设计模式是什么&#xff1f; …

【Matlab】基于遗传算法优化BP神经网络 (GA-BP)的数据时序预测

资源下载&#xff1a; https://download.csdn.net/download/vvoennvv/88682033 一&#xff0c;概述 基于遗传算法优化BP神经网络 (GA-BP) 的数据时序预测是一种常用的机器学习方法&#xff0c;用于预测时间序列数据的趋势和未来值。 在使用这种方法之前&#xff0c;需要将时间序…

Linux:apache优化(4)—— 隐藏版本号

运行环境 yum -y install apr apr-devel cyrus-sasl-devel expat-devel libdb-devel openldap-devel apr-util-devel apr-util pcre-devel pcre gcc make zlib-devel 源码包配置 ./configure --prefix/usr/local/httpd --enable-cgi --enable-rewrite --enable-so --enabl…

【Spark精讲】一文讲透SparkSQL聚合过程以及UDAF开发

SparkSQL聚合过程 这里的 Partial 方式表示聚合函数的模式&#xff0c;能够支持预先局部聚合&#xff0c;这方面的内容会在下一节详细介绍。 对应实例中的聚合语句&#xff0c;因为 count 函数支持 Partial 方式&#xff0c;因此调用的是 planAggregateWithoutDistinct 方法&a…

conda环境下nvrtc: error: invalid value for --gpu-architecture解决方法

1 问题描述 在运行视频处理的模型过程中&#xff0c;出现如下异常&#xff1a; nvrtc: error: invalid value for --gpu-architecture (-arch)nvrtc compilation failed: #define NAN __int_as_float(0x7fffffff) #define POS_INFINITY __int_as_float(0x7f800000) #define N…