MongoDB聚合:$merge 阶段(2)

$merge的用途是把聚合管道产生的结果写入指定的集合,有时候可以用$merge来做物化视图。下面是$merge的一些例子。

举例

按需物化视图:创建集合

当输出集合不存在时,$merge将自动创建。首先在zoo数据库的salaries集合中填充员工和部门历史数据:

db.getSiblingDB("zoo").salaries.insertMany([{ "_id" : 1, employee: "Ant", dept: "A", salary: 100000, fiscal_year: 2017 },{ "_id" : 2, employee: "Bee", dept: "A", salary: 120000, fiscal_year: 2017 },{ "_id" : 3, employee: "Cat", dept: "Z", salary: 115000, fiscal_year: 2017 },{ "_id" : 4, employee: "Ant", dept: "A", salary: 115000, fiscal_year: 2018 },{ "_id" : 5, employee: "Bee", dept: "Z", salary: 145000, fiscal_year: 2018 },{ "_id" : 6, employee: "Cat", dept: "Z", salary: 135000, fiscal_year: 2018 },{ "_id" : 7, employee: "Gecko", dept: "A", salary: 100000, fiscal_year: 2018 },{ "_id" : 8, employee: "Ant", dept: "A", salary: 125000, fiscal_year: 2019 },{ "_id" : 9, employee: "Bee", dept: "Z", salary: 160000, fiscal_year: 2019 },{ "_id" : 10, employee: "Cat", dept: "Z", salary: 150000, fiscal_year: 2019 }
])

然后,使用$group$merge管道阶段,在reporting数据库中创建一个名为budgets的集合。

注意:

  • 对于复制集或标准部署的情况,如果输出数据库不存在会自动创建数据库
  • 对于分片集群部署的情况,要求输出指定的数据库必须已经存在。
db.getSiblingDB("zoo").salaries.aggregate( [{ $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, salaries: { $sum: "$salary" } } },{ $merge : { into: { db: "reporting", coll: "budgets" }, on: "_id",  whenMatched: "replace", whenNotMatched: "insert" } }
] )
  • $group阶段根据fiscal_yeardept对salaries进行分组
  • $merge阶段将$group阶段处理的结果输出到reporting数据库的budgets集合。

此时,budegets将包含下面的文档:

{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 125000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 310000 }

按需物化视图:更新/替换数据

下面的例子继续使用上面例子的数据,salaries集合包含了员工薪酬和部门的历史数据:

{ "_id" : 1, "employee": "Ant", "dept": "A", "salary": 100000, "fiscal_year": 2017 },
{ "_id" : 2, "employee": "Bee", "dept": "A", "salary": 120000, "fiscal_year": 2017 },
{ "_id" : 3, "employee": "Cat", "dept": "Z", "salary": 115000, "fiscal_year": 2017 },
{ "_id" : 4, "employee": "Ant", "dept": "A", "salary": 115000, "fiscal_year": 2018 },
{ "_id" : 5, "employee": "Bee", "dept": "Z", "salary": 145000, "fiscal_year": 2018 },
{ "_id" : 6, "employee": "Cat", "dept": "Z", "salary": 135000, "fiscal_year": 2018 },
{ "_id" : 7, "employee": "Gecko", "dept": "A", "salary": 100000, "fiscal_year": 2018 },
{ "_id" : 8, "employee": "Ant", "dept": "A", "salary": 125000, "fiscal_year": 2019 },
{ "_id" : 9, "employee": "Bee", "dept": "Z", "salary": 160000, "fiscal_year": 2019 },
{ "_id" : 10, "employee": "Cat", "dept": "Z", "salary": 150000, "fiscal_year": 2019 }

budgets集合包含了年度累计预算:

{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 125000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 310000 }

在当前财政年度(本例中为 2019 年),将新员工增加到slaaries集合,并为下一年预分配一些人数:

db.getSiblingDB("zoo").salaries.insertMany([{ "_id" : 11,  employee: "Wren", dept: "Z", salary: 100000, fiscal_year: 2019 },{ "_id" : 12,  employee: "Zebra", dept: "A", salary: 150000, fiscal_year: 2019 },{ "_id" : 13,  employee: "headcount1", dept: "Z", salary: 120000, fiscal_year: 2020 },{ "_id" : 14,  employee: "headcount2", dept: "Z", salary: 120000, fiscal_year: 2020 }
])

下面的聚合将更新budgets集合以反映新的薪酬信息:

db.getSiblingDB("zoo").salaries.aggregate( [{ $match: { fiscal_year: 2019 }},{ $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, employees: { $push: "$employee" } } },{ $project: { _id: 0, dept: "$_id.dept", fiscal_year: "$_id.fiscal_year", employees: 1 } },{ $merge : { into : { db: "reporting", coll: "orgArchive" }, on: [ "dept", "fiscal_year" ], whenMatched: "fail" } }
] )

其中:

  • $match阶段查询出所有fiscal_year大于等于2019的文档。
  • $group阶段根据fiscal_yeardept字段对薪酬进行分组。
  • $merge将结果集写入到budgets集合,替换相同_id(fiscal_yeardept)的文档,本例中没有匹配到文档,所以只会插入新文档。

聚合运行后,查询budgets集合的结果:

db.getSiblingDB("reporting").budgets.find().sort( { _id: 1 } )

budget集合纳入了2019财年新的薪酬并新增了2020财年的新文档:

{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 275000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 410000 }
{ "_id" : { "fiscal_year" : 2020, "dept" : "Z" }, "salaries" : 240000 }

只新增数据

为了确认$merge没有覆盖集合的任何数据,设置whenMatchedkeepExistingfail。下面是zoo数据库的salaries集合,包含了员工薪酬和部门历史数据:

{ "_id" : 1, "employee": "Ant", "dept": "A", "salary": 100000, "fiscal_year": 2017 },
{ "_id" : 2, "employee": "Bee", "dept": "A", "salary": 120000, "fiscal_year": 2017 },
{ "_id" : 3, "employee": "Cat", "dept": "Z", "salary": 115000, "fiscal_year": 2017 },
{ "_id" : 4, "employee": "Ant", "dept": "A", "salary": 115000, "fiscal_year": 2018 },
{ "_id" : 5, "employee": "Bee", "dept": "Z", "salary": 145000, "fiscal_year": 2018 },
{ "_id" : 6, "employee": "Cat", "dept": "Z", "salary": 135000, "fiscal_year": 2018 },
{ "_id" : 7, "employee": "Gecko", "dept": "A", "salary": 100000, "fiscal_year": 2018 },
{ "_id" : 8, "employee": "Ant", "dept": "A", "salary": 125000, "fiscal_year": 2019 },
{ "_id" : 9, "employee": "Bee", "dept": "Z", "salary": 160000, "fiscal_year": 2019 },
{ "_id" : 10, "employee": "Cat", "dept": "Z", "salary": 150000, "fiscal_year": 2019 }

reporting数据库中的orgArchive集合包含了过去财年的部门组织记录。已归档的记录不能修改。

{ "_id" : ObjectId("5cd8c68261baa09e9f3622be"), "employees" : [ "Ant", "Gecko" ], "dept" : "A", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622bf"), "employees" : [ "Ant", "Bee" ], "dept" : "A", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622c0"), "employees" : [ "Bee", "Cat" ], "dept" : "Z", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622c1"), "employees" : [ "Cat" ], "dept" : "Z", "fiscal_year" : 2017 }

orgArchive集合创建一个由fiscal_yeardept构成的复合唯一索引,也就是说相同的财年和部门最多只有一条记录:

db.getSiblingDB("reporting").orgArchive.createIndex ( { fiscal_year: 1, dept: 1 }, { unique: true } )

在2019财年结束时,salaries集合包含下面的文档:

{ "_id" : 1, "employee" : "Ant", "dept" : "A", "salary" : 100000, "fiscal_year" : 2017 }
{ "_id" : 2, "employee" : "Bee", "dept" : "A", "salary" : 120000, "fiscal_year" : 2017 }
{ "_id" : 3, "employee" : "Cat", "dept" : "Z", "salary" : 115000, "fiscal_year" : 2017 }
{ "_id" : 4, "employee" : "Ant", "dept" : "A", "salary" : 115000, "fiscal_year" : 2018 }
{ "_id" : 5, "employee" : "Bee", "dept" : "Z", "salary" : 145000, "fiscal_year" : 2018 }
{ "_id" : 6, "employee" : "Cat", "dept" : "Z", "salary" : 135000, "fiscal_year" : 2018 }
{ "_id" : 7, "employee" : "Gecko", "dept" : "A", "salary" : 100000, "fiscal_year" : 2018 }
{ "_id" : 8, "employee" : "Ant", "dept" : "A", "salary" : 125000, "fiscal_year" : 2019 }
{ "_id" : 9, "employee" : "Bee", "dept" : "Z", "salary" : 160000, "fiscal_year" : 2019 }
{ "_id" : 10, "employee" : "Cat", "dept" : "Z", "salary" : 150000, "fiscal_year" : 2019 }
{ "_id" : 11, "employee" : "Wren", "dept" : "Z", "salary" : 100000, "fiscal_year" : 2019 }
{ "_id" : 12, "employee" : "Zebra", "dept" : "A", "salary" : 150000, "fiscal_year" : 2019 }
{ "_id" : 13, "employee" : "headcount1", "dept" : "Z", "salary" : 120000, "fiscal_year" : 2020 }
{ "_id" : 14, "employee" : "headcount2", "dept" : "Z", "salary" : 120000, "fiscal_year" : 2020 }

下面的聚合管道将更新orgArchive集合2019财年的数据:

db.getSiblingDB("zoo").salaries.aggregate( [{ $match: { fiscal_year: 2019 }},{ $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, employees: { $push: "$employee" } } },{ $project: { _id: 0, dept: "$_id.dept", fiscal_year: "$_id.fiscal_year", employees: 1 } },{ $merge : { into : { db: "reporting", coll: "orgArchive" }, on: [ "dept", "fiscal_year" ], whenMatched: "fail" } }
] )

其中:

  • $match阶段查询出所有fiscal_year等于2019的文档。
  • $group阶段根据fiscal_yeardept对员工进行分组。
  • $project_id字段进行抑制,并增加单独的deptfiscal_year字段。当文档通过$merge阶段时,将自动产生一个新的_id字段。
  • $merge根据deptfiscal_year字段匹配到文档后将产生错误。

聚合运行后,orgArchive集合将包含下列文档:

{ "_id" : ObjectId("5caccc6a66b22dd8a8cc419f"), "employees" : [ "Ahn", "Bess" ], "dept" : "A", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc419e"), "employees" : [ "Ahn", "Gee" ], "dept" : "A", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5caccd0b66b22dd8a8cc438e"), "employees" : [ "Ahn", "Zeb" ], "dept" : "A", "fiscal_year" : 2019 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc41a0"), "employees" : [ "Carl" ], "dept" : "Z", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc41a1"), "employees" : [ "Bess", "Carl" ], "dept" : "Z", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5caccd0b66b22dd8a8cc438d"), "employees" : [ "Bess", "Carl", "Wen" ], "dept" : "Z", "fiscal_year" : 2019 }

说明:

orgArchive集合中已经存在2019年有两个部门"A"、"B"的文档,则聚合会因为键值重复执行失败,并且出错前已经插入的数据无法回滚。
若使用keepExisting选项,则不会对已存在的文档产生影响,不会报错。若使用replace处理,则会替换已存在的文档,也不会报错。

合并多个集合的结果

默认情况下,$merge会覆盖目标集合中重复的文档。

在集合purchaseorders中,插入季度和区域的订单信息:

db.purchaseorders.insertMany( [{ _id: 1, quarter: "2019Q1", region: "A", qty: 200, reportDate: new Date("2019-04-01") },{ _id: 2, quarter: "2019Q1", region: "B", qty: 300, reportDate: new Date("2019-04-01") },{ _id: 3, quarter: "2019Q1", region: "C", qty: 700, reportDate: new Date("2019-04-01") },{ _id: 4, quarter: "2019Q2", region: "B", qty: 300, reportDate: new Date("2019-07-01") },{ _id: 5, quarter: "2019Q2", region: "C", qty: 1000, reportDate: new Date("2019-07-01") },{ _id: 6, quarter: "2019Q2", region: "A", qty: 400, reportDate: new Date("2019-07-01") },
] )

在集合reportedsales 中插入季度和区域的销售报告信息:

db.reportedsales.insertMany( [{ _id: 1, quarter: "2019Q1", region: "A", qty: 400, reportDate: new Date("2019-04-02") },{ _id: 2, quarter: "2019Q1", region: "B", qty: 550, reportDate: new Date("2019-04-02") },{ _id: 3, quarter: "2019Q1", region: "C", qty: 1000, reportDate: new Date("2019-04-05") },{ _id: 4, quarter: "2019Q2", region: "B", qty: 500, reportDate: new Date("2019-07-02") },
] )

按照季度查看报告:

{ "_id" : "2019Q1", "sales" : 1950, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 500, "purchased" : 1700 }

可以使用$mergepurchaseordersreportedsales集合进行合并,得到一个新的quarterlyreport集合,聚合:

db.purchaseorders.aggregate( [{ $group: { _id: "$quarter", purchased: { $sum: "$qty" } } },  // 按季度对订单进行分组{ $merge : { into: "quarterlyreport", on: "_id",  whenMatched: "merge", whenNotMatched: "insert" } }
])
  • $group阶段按季度进行分组,并使用$sumqty累加,形成purchased字段
{ "_id" : "2019Q2", "purchased" : 1700 }
{ "_id" : "2019Q1", "purchased" : 1200 }
  • $merge阶段将文档写入quarterlyreport集合,如果集合中有_id相同的文档则会合并,否则会插入新文档。

查询quarterlyreport集合文档数据:

db.quarterlyreport.find().sort( { _id: 1 } )

结果:

{ "_id" : "2019Q1", "sales" : 1200, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 1700, "purchased" : 1700 }

同样的,对reportedsales运行聚合管道,并将销售结果合并到quarterlyreport集合:

db.reportedsales.aggregate( [{ $group: { _id: "$quarter", sales: { $sum: "$qty" } } },  // 按季度对销售额汇总{ $merge : { into: "quarterlyreport", on: "_id",  whenMatched: "merge", whenNotMatched: "insert" } }
])
  • $group阶段按quarter进行分组并使用$sumqty的合计值放到sales字段,得到:
{ "_id" : "2019Q2", "sales" : 500 }
{ "_id" : "2019Q1", "sales" : 1950 }
  • merge阶段将文档输出到quarterlyreport集合,如果集合有相同_id(季度)的文档则进行合并,否则就插入新文档。

查询quarterlyreport的数据:

db.quarterlyreport.find().sort( { _id: 1 } )

可以看到集合包含下面的文档:

{ "_id" : "2019Q1", "sales" : 1950, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 500, "purchased" : 1700 }

使用管道定制合并

在匹配到文档时,$merge也可以使用自定义更新管道,whenMatched管道可以包含下面的这些阶段:

  • $addFields及其别名$set
  • $projecct及其别名$unset
  • $replaceRoot及其别名$replaceWith

下面的例子中,创建一个votes集合,包含了日常选票数据:

db.votes.insertMany( [{ date: new Date("2019-05-01"), "thumbsup" : 1, "thumbsdown" : 1 },{ date: new Date("2019-05-02"), "thumbsup" : 3, "thumbsdown" : 1 },{ date: new Date("2019-05-03"), "thumbsup" : 1, "thumbsdown" : 1 },{ date: new Date("2019-05-04"), "thumbsup" : 2, "thumbsdown" : 2 },{ date: new Date("2019-05-05"), "thumbsup" : 6, "thumbsdown" : 10 },{ date: new Date("2019-05-06"), "thumbsup" : 13, "thumbsdown" : 16 }
] )

另外,创建一个monthlytotals集合,包含有最新的每月总票数:

db.monthlytotals.insertOne({ "_id" : "2019-05", "thumbsup" : 26, "thumbsdown" : 31 }
)

最后,在创建一个votes集合,插入按日的选票数据:

db.votes.insertOne({ date: new Date("2019-05-07"), "thumbsup" : 14, "thumbsdown" : 10 }
)

下面使用$merge的自定义管道,更新monthlytotals集合中已经存在的文档:

db.votes.aggregate([{ $match: { date: { $gte: new Date("2019-05-07"), $lt: new Date("2019-05-08") } } },{ $project: { _id: { $dateToString: { format: "%Y-%m", date: "$date" } }, thumbsup: 1, thumbsdown: 1 } },{ $merge: {into: "monthlytotals",on: "_id",whenMatched:  [{ $addFields: {thumbsup: { $add:[ "$thumbsup", "$$new.thumbsup" ] },thumbsdown: { $add: [ "$thumbsdown", "$$new.thumbsdown" ] }} } ],whenNotMatched: "insert"} }
])

其中:

  • $match阶段查询指定日期的选票:

    { "_id" : ObjectId("5ce6097c436eb7e1203064a6"), "date" : ISODate("2019-05-07T00:00:00Z"), "thumbsup" : 14, "thumbsdown" : 10 }
    
  • $project阶段,设置_id字段为年-月字符串:\

    { "thumbsup" : 14, "thumbsdown" : 10, "_id" : "2019-05" }
    
  • $merge阶段,将文档写入monthlytotals集合,如果存在_id匹配到的文档,则使用管道添加thumbsupthumbsdown的投票

    • 管道不能直接访问聚合结果的字段,要访问thumbsupthumbsdown字段,需要使用$$new变量,如:$$new.thumbsup$new.thumbsdown
    • 对于集合中已存在的文档,管道可以直接访问thumbsupthumbsdown字段,如:$thumbsup$thumbsdown

聚合运行后,使用下面的指令查询monthlytotals集合数据:

db.monthlytotals.find()

结果:

{ "_id" : "2019-05", "thumbsup" : 40, "thumbsdown" : 41 }

使用变量自定义合并

$merge阶段的whenMatched字段,还可以使用变量,但变量在使用前必须提前定义,定义字段有两种方式:

  • $merge阶段使用let进行定义
  • 使用聚合命令let(从MongoDB5.0开始支持)

whenMatched中使用变量,必须以$$符号为前缀指定变量名$$<variable_name>,如:$$year。如果变量是文档,也可以包含文档字段,格式为$$<变量名>.<字段>。例如,$$year.month

在Merge阶段使用变量

$merge阶段使用let定义变量,并在whenMatched字段使用变量:

db.cakeSales.insertOne( [{ _id: 1, flavor: "chocolate", salesTotal: 1580,salesTrend: "up" }
] )db.runCommand( {aggregate: db.cakeSales.getName(),pipeline: [ {$merge: {into: db.cakeSales.getName(),let : { year: "2020" },whenMatched: [ {$addFields: { "salesYear": "$$year" }} ]}} ],cursor: {}
} )db.cakeSales.find()

说明:

  • 创建cakeSales集合并插入数据
  • 运行聚合执行,指令中使用let定义了year变量,并在whenMatched中把year赋值给字段salesYear
  • 查询cakeSales集合文档

输出:

{ "_id" : 1, "flavor" : "chocolate", "salesTotal" : 1580,"salesTrend" : "up", "salesYear" : "2020" }
在聚合命令中使用变量

从Mongodb5.0开始,可以在聚合命令中使用let定义变量,并在$merge阶段的whenMatched字段中引用。

举例:

db.cakeSales.insertOne({ _id: 1, flavor: "chocolate", salesTotal: 1580,salesTrend: "up" }
)db.runCommand( {aggregate: db.cakeSales.getName(),pipeline: [ {$merge: {into: db.cakeSales.getName(),whenMatched: [ {$addFields: { "salesYear": "$$year" } }] }}],cursor: {},let : { year: "2020" }
} )db.cakeSales.find()

说明:

  • 创建一个cakeSales集合并插入数据
  • 运行聚合命令,使用let定义一个year变量,在whenMatched中将year变量赋值给salesYear字段。
  • 显示cakeSales文档

输出:

{ "_id" : 1, "flavor" : "chocolate", "salesTotal" : 1580,"salesTrend" : "up", "salesYear" : "2020" }
同时在Merge和聚合命令中定义变量

可以同时在Merge阶段和命令中定义变量。如果在$merge阶段和聚合命令中定义了同名的变量,则优先$merge阶段的变量。

在下面的例子中,$merge节点定义了year变量,值为"2020",另外在聚合命令中也定义了year变量,值为"2019",运行下面的命令:

db.cakeSales.insertOne({ _id: 1, flavor: "chocolate", salesTotal: 1580,salesTrend: "up" }
)db.runCommand( {aggregate: db.cakeSales.getName(),pipeline: [ {$merge: {into: db.cakeSales.getName(),let : { year: "2020" },whenMatched: [ {$addFields: { "salesYear": "$$year" }} ]}} ],cursor: {},let : { year: "2019" }
} )db.cakeSales.find()

结果:

{_id: 1,flavor: 'chocolate',salesTotal: 1580,salesTrend: 'up',salesYear: '2020'
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang解决跨域问题【OPTIONS预处理请求】

Golang解决跨域问题 前置知识&#xff1a;跨域问题产生条件及原因 跨域是是因为浏览器的同源策略限制&#xff0c;是浏览器的一种安全机制&#xff0c;服务端之间是不存在跨域的。 所谓同源指的是两个页面具有相同的协议、主机和端口&#xff0c;三者有任一不相同即会产生跨域…

Autosar MCAL-RH850P1HC Mcu配置

文章目录 McuModuleConfigurationCvm Diag Lock BitCvm Out Mask DiagCvm Out Mask FbistCvm Output FilterCvm Reset EnableNumber Of Mcu ModesRam SectorsReset SettingSw Reset TriggerMcuClockSettingConfigClock Setting Id

数据库原理与应用快速复习(期末急救)

文章目录 第一章数据库系统概述数据、数据库、数据库管理系统、数据定义、数据组织、存储和管理、数据操纵功能、数据库系统的构成数据管理功能、数据库管理的3个阶段以及特点数据库的特点、共享、独立、DBMS数据控制功能数据库的特点 数据模型两类数据模型、逻辑模型主要包括什…

2023 IoTDB Summit:天谋科技 CTO 乔嘉林《IoTDB 企业版 V1.3: 时序数据管理一站式解决方案》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…

【Web2D/3D】CSS3的2D/3D转换、过渡、动画(第一篇)

1. 前言 本篇开始介绍Web2D和3D相关基础知识&#xff0c;会从CSS3的2D/3D转换、过渡、动画&#xff0c;讲到Canvas 2D图形绘制&#xff0c;再到SVG&#xff0c;最后到WebGL。 坐标系&#xff1a;左上点是坐标原点(0,0)&#xff0c;x轴正方向向右&#xff0c;y轴正方向向下&…

STL——查找算法

算法简介&#xff1a; find ——//查找元素find_if ——//按条件查找元素adjacent_find ——//查找相邻重复元素binary_search ——//二分查找法count ——//统计元素个数count_if ——//按条件统计元素个数 1.find 函数原型&#xff1a; find(iterator beg, iterator end,…

(学习打卡1)重学Java设计模式之设计模式介绍

前言&#xff1a;听说有本很牛的关于Java设计模式的书——重学Java设计模式&#xff0c;然后买了(*^▽^*) 开始跟着小傅哥学Java设计模式吧&#xff0c;本文主要记录笔者的学习笔记和心得。 打卡&#xff01;打卡&#xff01; 设计模式介绍 一、设计模式是什么&#xff1f; …

【Matlab】基于遗传算法优化BP神经网络 (GA-BP)的数据时序预测

资源下载&#xff1a; https://download.csdn.net/download/vvoennvv/88682033 一&#xff0c;概述 基于遗传算法优化BP神经网络 (GA-BP) 的数据时序预测是一种常用的机器学习方法&#xff0c;用于预测时间序列数据的趋势和未来值。 在使用这种方法之前&#xff0c;需要将时间序…

Linux:apache优化(4)—— 隐藏版本号

运行环境 yum -y install apr apr-devel cyrus-sasl-devel expat-devel libdb-devel openldap-devel apr-util-devel apr-util pcre-devel pcre gcc make zlib-devel 源码包配置 ./configure --prefix/usr/local/httpd --enable-cgi --enable-rewrite --enable-so --enabl…

oracle-检查点队列

检查点队列也在buffer cache上&#xff0c;和LRU&#xff0c;CBC。。。一样&#xff0c;也在一个链上。 检查点队列链也链的是脏块&#xff0c;也就是脏块不仅链在LRUW上&#xff0c;也在这里。 在LRUW上是按照冷热排列。而检查点队列链是按照脏块的第一次脏的时间顺序排序。 R…

20231230 SQL基础50题打卡

20231230 SQL基础50题打卡 570. 至少有5名直接下属的经理 表: Employee ---------------------- | Column Name | Type | ---------------------- | id | int | | name | varchar | | department | varchar | | managerId | int | -----------…

2024年单片机毕业设计选题物联网计算机电气电子类

博主八年毕业设计辅导经验&#xff0c;安全 可靠。 题目一&#xff1a;基于单片机的PM2.5空气质量检测仪器 选 1.用到ADC0832模数转换芯片&#xff0c;数据更加精准。 2.使用夏普传感器的GP2Y1010AUOF粉尘传感器实时检测空气中的PM2.5值并通过1602显示出来&#xff0c;检测…

【Spark精讲】一文讲透SparkSQL聚合过程以及UDAF开发

SparkSQL聚合过程 这里的 Partial 方式表示聚合函数的模式&#xff0c;能够支持预先局部聚合&#xff0c;这方面的内容会在下一节详细介绍。 对应实例中的聚合语句&#xff0c;因为 count 函数支持 Partial 方式&#xff0c;因此调用的是 planAggregateWithoutDistinct 方法&a…

conda环境下nvrtc: error: invalid value for --gpu-architecture解决方法

1 问题描述 在运行视频处理的模型过程中&#xff0c;出现如下异常&#xff1a; nvrtc: error: invalid value for --gpu-architecture (-arch)nvrtc compilation failed: #define NAN __int_as_float(0x7fffffff) #define POS_INFINITY __int_as_float(0x7f800000) #define N…

用python画最简单的图案,用python画小猫简单代码

本篇文章给大家谈谈用python画小猫简单100行代码&#xff0c;以及用python画最简单的图案&#xff0c;希望对各位有所帮助&#xff0c;不要忘了收藏本站喔。 Source code download: 本文相关源码 from turtle import * #两个函数用于画心 defcurvemove():for i in range(200): …

十二、K8S之污点和容忍

污点和容忍 一、概念 k8s 集群中可能管理着非常庞大的服务器&#xff0c;这些服务器可能是各种各样不同类型的&#xff0c;比如机房、地理位置、配置等&#xff0c;有些是计算型节点&#xff0c;有些是存储型节点&#xff0c;此时我们希望能更好的将 pod 调度到与之需求更匹配…

AI绘画工具Midjourney绘画提示词Prompt分享

一、Midjourney绘画工具 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭…

Python-01-print、input、#

目录 1、print函数的使用 2、input函数的使用 3、python中的注释 1、print函数的使用 print&#xff1a;基本输出函数 print&#xff08;输出内容&#xff09; eg&#xff1a; a100 b50 print(90) print(a) print(a*b) print("北京欢迎你")#字符串要引号引起…

Chapter 7 - 8. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理

Stomped CRC Counters Stomped CRC counters help in finding the location of bit errors in a network that uses cut-through switches. More precisely, these counters help in finding where bit errors do not exist. Stomped CRC 计数器有助于在使用直通式交换机的网络…

《微信小程序开发从入门到实战》学习六十六

6.5 界面API 6.5.2 导航栏菜单API 使用wx.getMenuButtonBoundingClientRect接口可以获取导航栏菜单按钮&#xff08;右上角“胶囊”按钮&#xff09;的布局位置信息。 坐标信息以屏幕左上角为原点。调用该接口不传入参数&#xff0c;返回值为Object类型&#xff0c;包含属性…