分布式技术之分布式发布订阅通信

文章目录

    • 什么是发布订阅?
    • 发布订阅的原理
      • Kafka 发布订阅原理及工作机制
    • 发布订阅的应用

什么是发布订阅?

  • 发布订阅的三要素是生产者、消费者和消息中心,生产者负责产生数据放到消息中心,消费者向消息中心订阅自己感兴趣的消息,当发布者推送数据到消息中心后,消息中心根据消费者订阅情况将相关数据推送给对应的订阅者。

在这里插入图片描述

发布订阅的原理

  • 在分布式通信领域中,消息系统一般有两种典型的模式。一种是点对点模式(P2P,Point to Point),另一种是发布订阅模式(Pub/Sub,Publish/Subscribe)。
    • 点对点模式:生产者将消息发送到消息中心,然后消费者从消息中心取出对应的消息进行消费。消息被消费后,消息中心不再存储该消息,因此其他消费者无法再消费该消息。也就是说,点对点模式虽然支持多个消费者,但一个消息只能被一个消费者消费,不允许重复消费。
    • 发布订阅模式:生产者可以发送消息到消息中心,而消息中心通常以主题(Topic)进行划分,每条消息都会有相应的主题,消息会被存储到自己所属的主题中,订阅该主题的所有消费者均可获得该消息进行消费。
  • 与点对点模式相比,发布订阅模式中一个消息可以被多个消费者进行消费,这也是和点对点模式的本质区别。

Kafka 发布订阅原理及工作机制

  • Kafka 是一种典型的发布订阅消息系统,其系统架构也是包括生产者、消费者和消息中心三部分。
    • 生产者(Producer)负责发布消息到消息中心;
    • 消费者(Consumer)向消息中心订阅自己感兴趣的消息,获得数据后进行数据处理;
    • 消息中心(Broker)负责存储生产者发布的消息和管理消费者订阅信息,根据消费者订阅信息,将消息推送给消费者。在 Kafka 中,消息中心本质上就是一组服务器,也可以说是 Kafka 集群。

Kafka 的架构图
在这里插入图片描述

  • Zookeeper 集群用来协调和管理 Broker 和 Consumer,实现了 Broker 和 Consumer 的解耦,并为系统提供可靠性保证。ZooKeeper 集群可以看作是一个提供了分布式服务协同能力的第三方组件,Consumer 和 Broker 启动时均会向 ZooKeeper 进行注册,由 ZooKeeper 进行统一管理和协调。ZooKeeper 中会存储一些元数据信息,比如对于 Broker,会存储主题对应哪些 分区(Partition),每个分区的存储位置等;对于 Consumer,会存储 消费组(Consumer Group) 中包含哪些 Consumer,每个 Consumer 会负责消费哪些分区等。

分区和消费组的原理和作用

  • Broker 负责存储消息数据,Consumer 负责消费数据,Consumer 消费数据的能力会影响 Broker 数据存储是否溢出的问题。若 Consumer 消费太慢,会导致 Broker 存储溢出,Broker 就会丢弃一部分消息。因此,Broker 和 Consumer 是 Kafka 的核心。
    在这里插入图片描述

  • Broker:在 Kafka 中,为了解决消息存储的负载均衡和系统可靠性问题,所以引入了主题和分区的概念。其中,主题是一个逻辑概念,指的是消息类型或数据类型。而分区是针对主题而言的,指的是一个主题的内容可以被划分成多个集合,分布在不同的 Broker 上,不同的 Broker 在不同的节点上。这里的集合就是分区,其中同一个分区只属于一个 Broker。

  • 分区的好处主要包括如下两点:

    • 实现负载均衡,避免单个 Broker 上的负载过高。比如,Topic 0 被分为 Partiton-0、Partiton-1 和 Partiton-2 三个分区,分别分布在 Broker 0、Broker 1 和 Broker 2 上。这,就使得 Topic 0 的消息可以分布在这 3 个分区中,实现负载均衡。
    • 实现消息的备份,从而保证系统的高可靠。比如,Topic 1 包含两个分区 Partiton-0、Partiton-1,每个分区内容一致,分别存储在 Broker 0 和 Broker 1 上,借此实现了数据备份。
  • Consumer:Kafka 中的消费组,指的是多个消费者的一个集合。一个消费组中的消费者共同消费主题消息,并且主题中每个消息只可以由消费组中的某一个消费者进行消费。在消息过多的情况下,单个消费者消费能力有限时,会导致消费效率过低,从而导致 Broker 存储溢出,丢弃一部分消息。Kafka 为了解决这个问题,所以引入了消费组。

发布订阅的应用

  • 假设在电商购物平台(为了方便理解,我对电商购物平台做了一定的简化)中,用户首先在订单系统下单,下单后库存系统会进行出货,通知系统则负责通知用户,整个流程可以用发布订阅的模式进行,如下图所示:
    在这里插入图片描述
  • 订单系统对应发布订阅模式中的生产者,消息中心有个主题专门存放下单信息,每次用户下单后,订单系统会向该主题写入数据;
  • 库存系统和通知系统对应发布订阅模式中的消费者,它们会向消息中心订阅下单信息相关的主题;
  • 订单系统向消息中心发布订单信息后,库存系统和通知系统都会获取到相应的下单信息,然后进行各自后续的操作,即库存系统进行出货,通知系统通过短信或邮件等方式通知用户。

发布订阅模式的关键特征

  • 实现了系统解耦,易于维护。生产者 / 发布者只负责消息的发布,不需要知道订阅者 / 消费者的数量,也不需要知道订阅者 / 消费者获取消息用来做什么,而订阅者 / 消费者也不需要知道什么时候生产者 / 发布者会发布消息。所以,生产者 / 发布者和订阅者 / 消费者互相独立,进而实现了系统解耦,每个部分可以单独维护,减少了因为生产者和消费者的耦合引入的一些相互影响。比如,如果两者耦合在一起,当生产者逻辑更改需要修改代码时,消费者部分的代码也受影响,因此每个部分单独维护降低了维护的复杂度。
  • 实现了异步执行,避免高负载。生产者 / 发布者发布消息到消息中心,当消息超过消息中心可以存储的容量后,消息中心会丢弃掉超出的消息,这样系统就不会因为消息数量多而导致系统故障。

知识扩展:观察者模式和发布订阅模式的区别是什么?
首先,我们看一下观察者模式。顾名思义,观察者模式下有观察者,那么就有被观察者,两者之间的关系是什么呢?
观察者负责监控被观察者的状态变更,如果被观察者的状态发生了改变,那么观察者根据状态的变更执行相关操作。举个例子,现在进程 A 是被观察者,进程 B 和进程 C 是观察者,当进程 B 观察到进程 A 中变量 X 由 3 变为 4 时,执行 X+1 的操作;当进程 C 观察到进程 A 中变量 X 由 3 变为 4 时,执行 X-1 的操作。也就是说,观察者模式,定义了被观察者与观察者的直接交互或通信关系。
接下来,我们看一下发布订阅模式。发布订阅模式中存在发布者、订阅者和消息中心,订阅者需要向消息中心指定自己对哪些数据感兴趣,发布者推送的数据放入消息中心后,消息中心根据订阅者订阅信息推送数据。也就是说,发布者和订阅者之间引入了消息中心,实现的是间接通信。
总结来讲,观察者模式采用了直接通信,观察者和被观察者通信时延会低一些,但它们的依赖关系比较强,不管是被观察者还是观察者逻辑或接口有更改,另外一个均会受影响。而发布者和订阅者模式采用间接通信,引入了消息中心,相对比较厚重,且通信时延相对会高一点,但实现了订阅者与发布者的解耦。

你知道的越多,你不知道的越多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【详解】KMP算法——每步配图让你打穿KMP

介绍 什么是KMP算法: KMP算法主要运用串的模式匹配中(简单来说就是在s串中找到一个与t串相等的子串,称为模式匹配)例如s为abcdef,t为bcd,那么就是在s中找到bcd,并返回其在s中的首下标&#xf…

(JAVA)-(网络编程)-初始网络编程

网络编程就是在通信协议下,不同的计算机上运行的程序,进行的数据传输。 讲的通俗一点,就是以前我们写的代码是单机版的,网络编程就是联机版的。 应用场景:即时通信,网游对战,金融证券&#xf…

arm day7

开关中断控制 main.c #include "key_it.h" #include "uart.h" void delay(int ms) {int i,j;for(i0;i<ms;i){for(j0;j<2000;j);} }int main() {key2_it_config();key1_it_config();key3_it_config();all_led_init();char buf[128];gets(buf); whil…

Android APK未签名提醒

最近新建了一个项目&#xff0c;在build.gradle中配置好了签名&#xff0c;在执行打包的时候打出的包显示已签名&#xff0c;但是在上传市场的时候提示未签名。于是排查了好久&#xff0c;发现在build.gradle中配置的minsdk 24&#xff0c;会导致不使用V1签名&#xff0c;于是我…

Kubernetes技术与架构-集群管理

Kubernetes技术与架构提供支撑工具支持集群的规划、安装、创建以及管理。 数字证书 用户可以使用easyrsa、openssl、cfssl工具生成数字证书&#xff0c;在kubernetes集群的api server中部署数字证书用于访问鉴权 资源管理 如上所示&#xff0c;定义一个服务类service用于负…

iptables防火墙(二)

目录 1、SNAT策略及应用 1.1、SNAT 策略概述 1.2、SNAT 策略的应用 2、DNAT 策略及应用 2.1、DNAT 策略概述 2.2、DNAT 策略的应用 3、规则的导出、导入 3.1、规则的备份及还原 3.2、使用 iptables 服务 4、使用防火墙脚本 4.1、防火墙脚本的构成 &#xf…

Python新姿势:用魔法方法玩转对象

文章目录 前言1\. 对象构建2\. 对象属性访问3\. 对象比较4\. 对象输出5\. 对象运算6\. 总结Python技术资源分享1、Python所有方向的学习路线2、学习软件3、入门学习视频4、实战案例5、清华编程大佬出品《漫画看学Python》6、Python副业兼职与全职路线 前言 Python中魔法方法&a…

百兆集成RJ45连接器电路设计原理

华强盛电子导读&#xff1a;HR911105A-H1159A01A-GY百兆网口带变压器原理 百兆集成RJ45连接器电路设计原理涉及到网络通信和电子工程领域。RJ45连接器是一种常见的网络连接器&#xff0c;广泛应用于以太网和其他网络通信中。 以下是百兆集成RJ45连接器电路设计的基本原理&…

冠赢互娱基于 OpenKrusieGame 实现游戏云原生架构升级

作者&#xff1a;力铭 关于冠赢互娱 冠赢互娱是一家集手游、网游、VR 游戏等研发、发行于一体的游戏公司&#xff0c;旗下官方正版授权的传奇类手游——《仙境传奇》系列深受广大玩家们的喜爱。基于多年 MMORPG 类型游戏的自研与运营经验&#xff0c;冠赢互娱正式推出了 2D M…

【数据结构】快速排序(4种方式实现)

前言&#xff1a;前面我们学习了几种相对比较简单的排序&#xff0c;今天我们要一起学习的是快速排序&#xff0c;我们将通过四种方式来模拟实现快排。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:数据结构 &#x1f448; &#x1f4a…

OpenCV(Python)基础—9小时入门版

OpenCV(Python)基础—9小时入门版 # # Author : Mikigo # Time : 2021/12/1 # 一、一句话简介 OpenCV (Open Source Computer Vision Library) 是用 C 语言编写&#xff0c;提供 Python、Java 等语言 API的一个开源计算机视觉库。 二、安装 1、Debian 系使用 apt 安装 O…

Innosetup 调用c# dll 和 c# dll的函数导出

目标需求&#xff0c;基于现在安装包脚本。需要在用户安装和卸载成功时。进行数据记录,所以需要调用c#dll 主要涉及到的知识点 需要理解脚本的文件使用机制脚本的文件dll加载&#xff0c;和dll的调用c# dll的制作&#xff0c;和工具的使用 下面具体介绍 脚本的文件dll加载&…

OSPF的DR与BDR-新版(16)

目录 整体拓扑 操作步骤 1.基本配置 1.1 配置R1的IP 1.2 配置R2的IP 1.3 配置R3的IP 1.4 配置R4的IP 1.5 检测R1与R4连通性 1.6 检测R1与R2连通性 1.7 检测R1与R3连通性 2.搭建基本的OSPF网络 2.1 配置R1 OSPF 2.2 配置R2 OSPF 2.3 配置R3 OSPF 2.4 配置R4 OSPF…

八皇后问题(C语言)

了解题意 在一个8x8的棋盘上放置8个皇后&#xff0c;使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后&#xff1f; 解决这个问题的目标是找到所有符合要求的皇后摆放方式&#xff0c;通常使用回溯算法来求解。回溯算法会尝试所有可能…

数据结构之树 --- 二叉树 < 堆 >

目录 1. 树是什么&#xff1f; 1.1 树的表示 2. 二叉树 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树的存储结构 2.4.1 顺序存储 2.4.2 链式存储 3. 二叉树顺序结构的实现 <堆> 3.1 二叉树的顺序结构 ​编辑 3.2 堆的概念及结构 ​编辑…

Appium+python自动化(八)- 初识琵琶女Appium(千呼万唤始出来,犹抱琵琶半遮面)- 下(超详解)

简介 通过上一篇宏哥给各位小伙伴们的引荐&#xff0c;大家移动对这位美女有了深刻的认识&#xff0c;而且她那高超的技艺和婀娜的身姿久久地浮现在你的脑海里&#xff0c;是不是这样呢&#xff1f;&#xff1f;&#xff1f;不要害羞直接告诉宏哥&#xff1a;是&#xff0c;就对…

C单片机数据类型与格式化

C语言数据类型 关键字位数表示范围stdint关键字ST关键字举例unsigned char80 ~ 255uint8_tu8u8 data 128char8-128 ~ 127int8_ts8s8 temperature 25unsigned short160 ~ 65535uint16_tu16u16 counter 5000short16-32768 ~ 32767int16_ts16s16 position 32767unsigned int3…

基于YOLOv5+Deepsort 的PCB缺陷检测及计数系统

背景&#xff1a; PCB&#xff08;Printed Circuit Board&#xff0c;印刷电路板&#xff09;是电子产品中至关重要的组成部分&#xff0c;它承载着电子元器件并提供电气连接。在PCB制造过程中&#xff0c;由于工艺、材料或设备等因素的影响&#xff0c;可能会引入各种缺陷&am…

电表通讯协议DLT645-2007编程

1、协议 电表有个电力行业推荐标准《DLT645-2007多功能电能表通信协议》&#xff0c;电表都支持&#xff0c;通过该协议读取数据&#xff0c;不同的电表不需要考虑编码格式、数据地址、高低位转换等复杂情况&#xff0c;统一采集。 不方便的地方在于这个协议定义得有点小复杂…

Strateg策略模式(组件协作)

策略模式&#xff08;组件协作&#xff09; 链接&#xff1a;策略模式实例代码 注解 目的 正常情况下&#xff0c;一个类/对象中会包含其所有可能会使用的内外方法&#xff0c;但是一般情况下&#xff0c;这些常使用的类都是由不同的父类继承、组合得来的&#xff0c;来实现…