R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

原文链接:http://tecdat.cn/?p=23800

由于空气污染对公众健康的不利影响,人们一直非常关注。世界各国的环境部门都通过各种方法(例如地面观测网络)来监测和评估空气污染问题点击文末“阅读原文”获取完整代码数据)。

介绍

全球的地面站及时测量了许多空气污染物,例如臭氧、一氧化碳、颗粒物。EPA(环境保护署)提供了空气污染数据,本文选择了颗粒物2.5(PM2.5)和空气质量指数(AQI)这两个关键变量,以可视化和分析空气污染的趋势和模式。PM2.5代表直径小于2.5微米的颗粒物浓度,AQI是综合考虑所有主要污染物的空气污染状况的整体指标。具体来说,此工作的数据源列出如下:

  • 监测人员每天的PM 2.5浓度水平和AQI指数数据;

  • 县一级的AQI年度摘要。

数据预处理

每日站点数据包含每个地面站与PM2.5相关的各种属性。有关站信息,污染物的关键变量通过以下代码从原始数据中过滤掉。重命名过滤后的数据框的列名,以方便以下分析。

#导入数据
aqi <- read_csv("aqi.csv")

37a048b958be01d2cc343f828fe49331.png

daily<- read_csv("daily.csv")

0c0b07a52ad6e789eecc5ccb93be8d30.png

names(data) <- c( "date", "pm25", "aqi",  "long", "lat")

统计摘要

对点级PM2.5浓度和县级AQI指数的基本统计描述可以帮助更好地理解这两个变量。在这里,直方图和箱形图用于可视化PM2.5浓度和AQI的分布特征。每日AQI指数可衡量空气污染的严重程度,可用于根据AQI的值将天数分为不同的类别。就空气污染水平而言,通常可以将天气分为四类,包括良好,中度,不健康和危险。

本报告中使用的县级AQI数据包括四个类别变量,代表每个类别的天数。下面的代码直观地显示了四个类别变量的分布。根据直方图,大多数县在整年总体空气质量良好,这可以通过良好''分布的偏斜来表示,不健康''和危险''的0天左右的分布间隔非常窄。此外,良好''和中等''的分布显示出相反的偏斜,这表明空气质量中等的日子在全年并不典型,因为中等''的分布集中在50天以下,而``良好''的分布在250天以上。

## 县域内aqi的直方图
vi <-aqi %>% select(`好', `中等', `不健康', `危险') %>%ggplot(data = vi )

ee061bdd556ae3fdf72a544f885bfe4a.png

县级数据代表空气污染的平均水平。来自地面站的PM2.5和AQI的点级测量描述了空气污染的详细情况和当地情况。


点击标题查阅往期内容

d05871020140db8a4ca453860ba10bfa.png

R语言空间可视化:绘制英国脱欧投票地图

outside_default.png

左右滑动查看更多

outside_default.png

01

443b8b8e0cdc38f7c48d6a3b9bccf56a.png

02

6ad5d29021e0f50728ac82dd15c5984b.png

03

947f8fca13c2c672cd1dfcf5d41d206f.png

04

5a0882dab6d9c7b681526f1cf821b48c.png

站级的PM2.5和AQI的分布如下所示。两种分布都显示出正偏度,AQI聚集在50附近,而PM2.5低于25。在这一年中,很少出现两个变量都具有高值的站点。

## ##AQI和PM2.5的直方图pmaqi  %>%
ggplot(data) +geom_histogram(aes(x = value), bins = 35) +

f1c4a0c8aa81242d46b5b4507673eb9d.png

ggplot(data) +geom_boxplot(aes(x =class,  y = value))

550ca95ffe55bd1f490265c257527bda.png

时间变化

每日数据记录了2018年监测站点每天的观测时间序列,可用于探索PM2.5和AQI的趋势。首先,针对每种数据对每种状态下站点的测量值求平均。选择了七个州的时间序列以显示其一年中的变化,如下所示。从该图可以看出,南部和西部各州在年初就经历了严重的空气污染问题。趋势曲线的高峰表明,下半年的空气质量均较差。

##按州和日排列
vis <- select(state, date, pm25, aqi) %>%group_by(state, date) %>%summarise(pm25 = mean(pm25), aqi = mean(aqi)) %>%ggplot(data = vis)

19702e87401c5bda6d3d6d9b1a610082.png

为了显示总体变化,每天汇总来自所有监视的测量值。一年中的总体变化绘制如下。我们可以看到,AQI和PM2.5的变化趋势显示出相似的模式,而夏季和冬季的空气污染更为严重。

##按天数计算select(date, pm25, aqi) %>%group_by(date) %>%summarise( mean(pm25), mean(aqi)) %>%
ggplot(data = vis) +

0e27fb22f5b6f236b146f18d79334547.png

空间分布

汇总了针对不同州的县级AQI指数,以探索每个州的空气质量的空间变化。下图通过渐变颜色绘制了变量良好天气的不同平均值。该地图显示了各州空气质量良好的日子。从地图上可以看出,北部和东部地区的空气条件比其他州更好。

##按州汇总aqi(区域水平)。vis <- aqi %>%group_by(State) %>%ggplot() +geom_polygon(aes(x = long, y = lat, group = group, fill = good)

77e2dc09571d42fe6a84eb24fcfbd52f.png

下面还绘制了不健康天数变量的平均值,这证实了以前的观察结果,即东部各州的空气条件较好。

ggplot() +geom_polygon(aes(x = long, y = lat, group ,  fill ),          scale\_fill\_distiller

9525c27cc0ee721e189a14dfc49dd974.png

每个站点的站点级别测量值汇总为年平均值。下图显示了美国年平均PM2.5浓度的空间分布。绿色点表示较低的PM2.5浓度。西部的测站测得的PM2.5浓度较高。

## 数据的汇总
###用于pm2.5pmaqi %>%summarise(pm25 = mean(pm25), aqi = mean(aqi), long = mean(long), lat = mean(lat)) %>%
ggplot() +geom_polygon(aes(x = long, y = lat, group = group)

09dd6e2335a4fb191e4c021d993b454a.png

AQI可以提供更全面的空气状况度量。站点上的点级AQI映射如下。由于AQI考虑了许多典型污染物,因此与PM2.5的模式相比,AQI的分布显示出不同的模式。

###aqi指数
vi<- vi\[class == "aqi", \]
ggplot(vi) +geom_polygon(aes(x = long, y = lat, group = group)

a9eaa7789b64d72e798ec294095fb4a2.png

结论

本报告利用了空气污染数据和R的可视化,从时空维度探讨了空气污染的分布和格局。从数据中可以识别出PM2.5和AQI的时空变化。夏季和冬季均遇到空气污染问题。西部和南部的州比北部和东部的州更容易遭受空气污染问题。

c9f041f87bedab53345149e73a829dbb.jpeg

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

547c8c4f5129821f9465b1a0b56d0d1a.png

e3f7529895feed5221373c793eab0597.jpeg

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)》。

4439aab458a97cb0b2bde515688277f8.jpeg

d12cf5d7b1974ff7b30a149e42e78de4.png

点击标题查阅往期内容

上海无印良品地理空间分布特征与选址策略可视化研究

R语言空间可视化:绘制英国脱欧投票地图

R语言在地图上绘制散点饼图可视化 

r语言空间可视化绘制道路交通安全事故地图

在GIS中用ggmap地理空间数据分析

tableau的骑行路线地理数据可视化

R语言推特twitter转发可视化分析

618电商大数据分析可视化报告

用RSHINY DASHBOARD可视化美国投票记录

python主题LDA建模和t-SNE可视化

R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

R语言动态图可视化:如何、创建具有精美动画的图

Tableau 数据可视化:探索性图形分析新生儿死亡率数据

R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图

4e6e814504b2198fa865820a2dbb3f1d.png

6a4904cfd2abc13b06969e210f615c15.jpeg

a39e47d5594b842edf50cd013c44cb50.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可拖动表格

支持行拖动&#xff0c;列拖动 插件&#xff1a;sortablejs UI: elementUI <template><div><hr style"margin: 30px 0;"><div><!-- 数据里面要有主键id&#xff0c; 否则拖拽异常 --><h2 style"margin-bottom: 30px&qu…

打开谷歌浏览器远程调试功能

谷歌浏览器远程调试功能 首先我们来启动Chrome的远程调试端口。你需要找到Chrome的安装位置&#xff0c;在Chrome的地址栏输入chrome://version就能找到Chrome的安装路径 开启远程控制命令 文件路径/chrome.exe --remote-debugging-port9222开启后的样子(注意要关闭其他谷歌浏…

Qt快捷键

#include //注意&#xff0c;头文件一定要添加 QT提供了一个很有用的调试方式&#xff1a;断点调试。这使用户可以轻易地看到自己某个部分的调试结果。下面是使用方法&#xff1a; 按下F5或者左侧的在这里插入图片描述进入调试模式&#xff0c;然后在代码的左侧设置断点 一:断…

MFC网络编程简单例程

目录 一、关于网络的部分概念1 URL(网址)及URL的解析2 URL的解析3 域名及域名解析3 IP及子网掩码4 什么是Web服务器5 HTTP的基本概念6 Socket库概念7 协议栈8 Socket库收发数据基本步骤 二、基于TCP的网络应用程序三、基于UDP的网络应用程序 一、关于网络的部分概念 1 URL(网址…

安防视频监控/视频集中存储/云存储平台EasyCVR平台无法播放HLS协议该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…

基于 OV5640 摄像头理论知识讲解-成像和采样原理

基于OV2640/ OV5640 的图像采集显示系统系列文章目录&#xff1a; &#xff08;1&#xff09;基于 OV5640 摄像头理论知识讲解-成像和采样原理 &#xff08;2&#xff09;基于 OV5640 摄像头理论知识讲解-数字接口和控制接口 &#xff08;3&#xff09;基于 OV5640 摄像头理论知…

springboot第37集:kafka,mqtt,Netty,nginx,CentOS,Webpack

image.png binzookeeper-server-start.shconfigzookeeper.properties.png image.png image.png 消费 image.png image.png image.png image.png image.png image.png image.png image.png image.png Netty的优点有很多&#xff1a; API使用简单&#xff0c;学习成本低。功能强大…

Pillow:Python的图像处理库(安装与使用教程)

在Python中&#xff0c;Pillow库是一个非常强大的图像处理库。它提供了广泛的图像处理功能&#xff0c;让我们可以轻松地操作图像&#xff0c;实现图像的转换、裁剪、缩放、旋转等操作。此外&#xff0c;Pillow还支持多种图像格式的读取和保存&#xff0c;包括JPEG、PNG、BMP、…

db2迁移至oracle

1.思路 &#xff08;1&#xff09;用java连接数据库&#xff08;2&#xff09;把DB2数据导出为通用的格式如csv&#xff0c;json等&#xff08;3&#xff09;导入其他数据库&#xff0c;比如oracle&#xff0c;mongodb。这个方法自由发挥的空间比较大。朋友说他会用springboot…

BananaPi BPI-6202工业控制板全志科技A40i、24V DC输入、RS485接口

Banana Pi BPI-6202“嵌入式单板计算机”采用工业级全志A40i四核Cortex-A7处理器&#xff0c;工业温度范围和长生命周期&#xff0c;2GB DDR3&#xff0c;8GB eMMC闪存&#xff0c;M.2 SATA插槽等。 这是自 Banana Pi去年推出Banana Pi BPI-M2 Ultra SBC 和BPI-M2 Berry以来&am…

算法通关村第8关【黄金】| 寻找祖先问题

思路&#xff1a;递归三部曲 第一步&#xff1a;确定参数和返回值 题目要求找到指定的结点&#xff0c;就需要返回结点。 题目又涉及到p,q就需要传入p,q&#xff0c;需要遍历传入root 第二步&#xff1a;确定终止条件 当遍历到结点为空说明到底没找到返回空 或者遍历到p,…

华为云新生代开发者招募

开发者您好&#xff0c;我们是华为2012UCD的研究团队 为了解年轻开发者的开发现状和趋势 正在邀请各位先锋开发者&#xff0c;与我们进行2小时的线上交流&#xff08;江浙沪附近可线下交流&#xff09; 聊聊您日常开发工作中的产品使用需求 成功参与访谈者将获得至少300元京…

Xshell7和Xftp7的下载、安装及连接服务器的教程

1.下载 1.官网地址&#xff1a; XSHELL - NetSarang Website 选择学校免费版下载 2.将XSHELL和XFTP全都下载下来 2.安装 安装过程就是选择默认选项&#xff0c;然后无脑下一步 3.连接服务器 1.打开Xshell7&#xff0c;然后新建会话 2.填写相关信息 出现Connection establ…

【算法】双指针求解盛最多水的容器

Problem: 11. 盛最多水的容器 文章目录 题目解析算法原理讲解复杂度Code 题目解析 首先我们来解析一下本题 题目中说到&#xff0c;要找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 那我们现在来看最外侧的两根&#xff0c;一个高度为8&#…

Databend 开源周报第 108 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 多源数据目录 …

无涯教程-Android - Intents/Filters

Android Intent 是要执行的操作的抽象描述。它可以与 startActivity 一起启动Activity&#xff0c;将 broadcastIntent 发送给任何BroadcastReceiver组件&#xff0c;并与 startService(Intent)或 bindService(Intent&#xff0c;ServiceConnection&#xff0c;int)与后台服务进…

华硕笔记本摄像头倒置怎么办?华硕笔记本摄像头上下颠倒怎么调整

笔记本电脑相较于台式电脑&#xff0c;更易携带&#xff0c;解决了很大一部分人的使用需求。但是笔记本电脑也存在很多不足&#xff0c;比如华硕笔记本电脑就经常会出现摄像头倒置的错误&#xff0c;出现这种问题要如何修复呢&#xff1f;下面就来看看详细的调整方法。 华硕笔记…

centos安装Nginx配置Nginx

1. 查看操作系统有没有安装Nginx which nginx 2. 使用epel的方式进行安装&#xff08;方法二&#xff09; 先安装epel sudo yum install yum-utils 安装完成后&#xff0c;查看安装的epel包即可 sudo yum install epel 3 开始安装nginx 上面的两个方法不管选择哪个&…

MySQL官网下载安装包

MySQL官网&#xff1a; MySQL MySQL 8.0官网下载地址&#xff1a; MySQL :: Download MySQL Community Server 2023-07-18 MySQL 8.1.0 发布&#xff0c;这是 MySQL 变更发版模型后的第一个创新版本 (Innovation Release) 。 如果在官网中找不到下载位置&#xff0c;点击第二个…

算法面试-深度学习面试题整理(2024.8.29开始,每天下午持续更新....)

一、无监督相关&#xff08;聚类、异常检测&#xff09; 1、常见的距离度量方法有哪些&#xff1f;写一下距离计算公式。 1&#xff09;连续数据的距离计算&#xff1a; 闵可夫斯基距离家族&#xff1a; 当p 1时&#xff0c;为曼哈顿距离&#xff1b;p 2时&#xff0c;为欧…