【动态规划精选题目】3、简单多状态模型

此动态规划系列主要讲解大约10个系列【后续持续更新】

本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码

目录

1、按摩师

2、力扣198:打家劫舍1

3、打家劫舍II

4、删除并获得点数

5、 粉刷房子

6、力扣309:买卖股票的最佳时机含冷冻期

7、 买卖股票的最佳时机含手续费

 8、买卖股票的最佳时机III

9、买卖股票的最佳时机IV


1、按摩师

示例分析: 

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;//创建两个dp表f和gvector<int> f(n);//n个数据都会初始化为0auto g = f;//创建g表f[0] = nums[0]; //初始化for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]); }
};

借多状态dp的题说明一下,怎么判断是一维dp还是二维dp呢?

由状态表示决定的,如果一维数组能表示清楚,就用一维的,表示不清楚,就可以尝试增加维数,用二维的,有时候其实三维的也有,但是情况少。 


2、力扣198:打家劫舍1

 这道题跟上道题的按摩师的思路和代码基本一样

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> f(n);auto g = f;f[0] = nums[0];for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

3、打家劫舍II

这道题只是在上一道题的打家劫舍1中加了一个限制条件,即首尾也算相连,不能都偷窃,所以只需分类讨论下这个情况,再转换为打家劫舍1即可(下面的rob1表示的是可以偷的范围,也就是可以用打家劫舍1来求解的地方)

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));}int rob1(vector<int>& nums, int left, int right){if (left > right) return 0;//处理边界条件int n = nums.size();//按理说开right-left+1个空间即可,但这里多开几个也没事vector<int> f(n);auto g = f;f[left] = nums[left];//初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[right], g[right]);}
};

4、删除并获得点数

 动态规划的预处理思路:

其实上面的思想就是利用哈希表中的直接映射法,那么这种方法就要找nums数组中的最大值,但是题目中已经给出了nums数组中每个值的范围,故可以直接开空间大小为最大值。并且这种方法既做到了数据有序又做到了连续 

整体思路: 

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;//数组中的最大值为1万,多开1个防止越界问题//1、预处理int arr[N] = {0};for (const auto& x : nums) arr[x] += x;//2、利用打家劫舍思路求解该问题vector<int> f(N);auto g = f;//这里不用初始化了,因为f[0]=arr[0],可arr[0]本来就=0for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[N - 1], g[N - 1]);}
};

5、 粉刷房子

解释示例1和示例2:

也就是判断当前位置是第几个房子,只需看行即可,列是代表颜色的 

 总体思路:

下面说的位置可以理解为是一个房子

理解本题的虚拟节点: 

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();//得到的是行数,即现有的房子数vector<vector<int>> dp(n + 1, vector<int> (3));//多开一行给虚拟节点//从上到下遍历每个房子,算出每个房子对应不同颜色的价格for (int i = 1; i <= n; i++){//因为多开了一个虚拟节点,所以要加上cost[i-1][0],这里要用i-1才行dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i- 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i- 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i- 1][2];}return min(min(dp[n][0], dp[n][1]), dp[n][2]);}
};

6、力扣309:买卖股票的最佳时机含冷冻期

题目分析: 

如果是多状态,并且多状态之间可以相互转移的话 ,为了不忽略某种状态,我们可以画一个图,如下图,我们也称为这种图为状态机

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//三个dp表dp[0][0] = -prices[0];//初始化 for (int i = 1; i < n; ++i){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}//最佳答案一定不会是dp[n - 1][0],所以最后不用考虑在内return max(dp[n - 1][1], dp[n - 1][2]);}
};

7、 买卖股票的最佳时机含手续费

 示例解释:

 箭头起始位置:前一天结束后的状态,箭头指向位置:当天结束状态

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<int> f(n);auto g = f;f[0] = -prices[0];//初始化:第0天结束后处于买入状态for (int i = 1; i < n; i++){f[i] = max(f[i- 1], g[i - 1] - prices[i]);g[i] = max(f[i - 1] + prices[i] - fee, g[i - 1]);}//最后一天手里还有股票,肯定就不是最优解,故不用考虑return g[n - 1];}
};

 当然,像之间那种开二维数组也可以,但是三种状态及以上才推荐开二维数组,下面这么写也可以


 8、买卖股票的最佳时机III

示例分析:

此题复杂在还要考虑交易的次数。

买入是指手里有股票的状态,卖出是指手里没股票,是一个可交易的状态。下图的线的含义,线的起点表示前一天结束后的状态,线表示当天的操作,箭头所指的表示当天结束后的状态 

 但是因为f和g表初始化的不一致,可又不想在循环外再初始化哪个特例,就用稍微修改状态转移方程的方法来便于统一的初始化

class Solution {
public:const int INF = 0x3f3f3f;//int最大值的一半int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f;//初始化f和g表的第一行的第一个元素f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);//天数不会越界,因为在这之前f和g表已经初始化了g[i][j] = g[i - 1][j];if (j - 1 >= 0){   //要么j-1交易次数存在,则考虑这种情况,//要么不存在,那么g[i][j]就直接=g[i-1][j]g[i][j] = max(g[i][j], f[i -1][j - 1] + prices[i]);}}}//找到g表最后一行的最大值int ret = 0;for (int i = 0; i < 3; i++)ret = max(g[n - 1][i], ret);return ret;         }
};

9、买卖股票的最佳时机IV

本题跟买卖股票的最佳时机III的分析思路基本一模一样,但是本题多了一个细节问题,即优化时间复杂度

 

 

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n / 2);//处理细节问题vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){//因为第一行已经初始化了,所以i从1开始for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++)ret = max(ret, g[n - 1][i]);return ret;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586258.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据库系统概论】第7章-数据库设计

文章目录 7.1 数据库设计概述7.2 需求分析7.2.1 需求分析的任务7.2.2 需求分析的难点7.2.2 需求分析的方法7.2.3 数据字典 7.3 概念结构设计7.3.1 概念模型7.3.2 E-R模型7.3.3 概念结构设计 7.4 逻辑结构设计7.4.1 E-R图向关系模型的转换7.4.2 数据模型的优化7.4.3 设计用户子模…

【教程】标注工具Labelimg的安装与使用

图片标注主要是为了建立自己的数据集&#xff0c;便于进行更深度的学习训练。本篇文章将对一款十分好用的图片标注工具labelimg进行介绍&#xff0c;重点介绍其安装以及使用的过程。 - 什么是labelimg labelimg 是一个可视化的图像标定工具。它是用Python编写的&#xff0c;并…

HDFS客户端UnknownHostException事故解析

文章目录 前言事故现场问题分析是否是整个域名解析服务当时都出问题了是否是出问题的pods本身的域名解析有问题 异常发生的全部过程域名的解析是什么时候发生的&#xff0c;怎么发生的域名解析的详细流程 重试发生在什么地方为什么重试会无效 Bugfix代码详解关于StandardHostRe…

特殊权限(suid sticky acl mask)

1.suid 1. 普通用户可不可以修改密码&#xff1f; 答&#xff1a;是可以的&#xff0c;可以修改自己的密码 2. /etc/shadow 文件的作用是什么&#xff1f; 答&#xff1a;存储用户密码的文件 3. 普通用户是否可以修改/etc/shadow 文件&#xff1f; 答&#xff1a;不可以&…

STM32+Codesys工业软件PLC解决方案

工业控制系统在现代制造和自动化领域扮演着关键角色, 基于IEC 61131-3 标准的控制器编程开发软件平台CODESYS&#xff0c;适用于多种行业的控制系统的开发,使用户方便快捷地对自动化工程进行编程和配置&#xff0c;完成项目开发、软件测试和应用调试。 本次STM32联合合作伙伴C…

服务器运行状况监控工具

服务器运行状况监视提供了每个服务器状态和性能的广泛概述&#xff0c;通过监控服务器指标&#xff0c;如 CPU 使用率、内存消耗、I/O、磁盘使用率、进程等&#xff0c;服务器运行状况监控可以避免服务器停机。 服务器性能监控指标 服务器是网络中最重要的组件之一&#xff0…

计算机网络复习6

应用层 文章目录 应用层网络应用模型域名系统DNS文件传输协议FTP电子邮件万维网 网络应用模型 客户/服务器模型 客户/服务器&#xff08;Client/Server&#xff0c;C/S)模型中&#xff0c;有一个总是打开的主机称为服务器&#xff0c;它服务于许多来自其他称为客户机的主机请求…

Java集合/泛型篇----第一篇

系列文章目录 文章目录 系列文章目录前言一、ArrayList和linkedList的区别二、HashMap和HashTable的区别三、Collection包结构,与Collections的区别四、泛型常用特点前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站…

Spring系列学习四、Spring数据访问

Spring数据访问 一、Spring中的JDBC模板介绍1、新建SpringBoot应用2、引入依赖&#xff1a;3、配置数据库连接&#xff0c;注入dbcTemplate对象&#xff0c;执行查询&#xff1a;4&#xff0c;测试验证&#xff1a; 二、整合MyBatis Plus1&#xff0c;在你的项目中添加MyBatis …

从零开始:使用 BIND 构建和管理您的 DNS 服务器

1 前言 在这篇文章中&#xff0c;我将详细介绍如何使用 BIND&#xff08;Berkeley Internet Name Domain&#xff09;软件包中的 named 程序来配置和管理一个基本的 DNS 服务器。 从安装 BIND 开始&#xff0c;到设置 DNS 区域文件&#xff0c;再到运行和测试您的服务器&#x…

Oracle 19c OCP 1z0 082考场真题解析第17题

考试科目&#xff1a;1Z0-082 考试题量&#xff1a;90 通过分数&#xff1a;60% 考试时间&#xff1a;150min 本文为云贝教育郭一军guoyJoe原创&#xff0c;请尊重知识产权&#xff0c;转发请注明出处&#xff0c;不接受任何抄袭、演绎和未经注明出处的转载。 17. Which three …

AQS之ReentrantReadWriteLock

AQS之ReentrantReadWriteLock 一. 归纳总结 ReentrantReadWriteLock适合读多写少的场景。是可重入的读写锁实现类。其中, 写锁是独占的&#xff0c;读锁是共享的。 支持锁降级&#xff08;持有写锁、获取读锁&#xff0c;最后释放写锁的过程&#xff09; 锁降级可以帮助我们…

oracle-存储结构

文件包括 控制文件.ctl、数据文件.dbf、日志文件.log这三类放在存储上。 参数文件&#xff1a;空间的划分&#xff0c;进程的选用&#xff08;.ora&#xff09; oracle启动的时候需要读一下&#xff0c;数据库启动后&#xff0c;参数文件并不关闭&#xff0c;但即使文件丢了&a…

Python生成器 (Generators in Python)

Generators in Python 文章目录 Generators in PythonIntroduction 导言贯穿全文的几句话为什么 Python 有生成器Generator&#xff1f;如何获得生成器Generator&#xff1f;1. 生成器表达式 Generator Expression2. 使用yield定义生成器Generator 更多Generator应用实例表示无…

车牌识别技术,如何用python识别车牌号

目录 一.前言 二.运行环境 三.代码 四.识别效果 五.参考 一.前言 车牌识别技术&#xff08;License Plate Recognition, LPR&#xff09;在交通计算机视觉&#xff08;Computer Vision, CV&#xff09;领域具有非常重要的研究意义。以下是该技术的一些扩展说明&#xff1…

Day20 222完全二叉树的节点个数 110平衡二叉树 257二叉树的所有路径

222 完全二叉树的结点个数 本题先不把它当成完全二叉树来看&#xff0c;用广度优先和深度优先搜索分别遍历&#xff0c;也能达到目的&#xff0c;只要将之前的代码稍加修改即可。注意后序遍历时的result要加上自身本身的那个结点。 //后序递归遍历 class Solution { public:in…

STL——集合算法

算法简介&#xff1a; set_intersection // 求两个容器的交集set_union // 求两个容器的并集set_difference // 求两个容器的差集 1.set_intersection 函数原型&#xff1a; set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);…

【办公技巧】怎么批量提取文件名到excel

Excel是大家经常用来制作表格的文件&#xff0c;比如输入文件名&#xff0c;如果有大量文件需要输入&#xff0c;用张贴复制或者手动输入的方式还是很费时间的&#xff0c;今天和大家分享如何批量提取文件名。 打开需要提取文件名的文件夹&#xff0c;选中所有文件&#xff0c…

iptables 防火墙(二)

目录 1. SNAT 策略及应用 1.1 SNAT策略概述 1. 只开启路由转发&#xff0c;未设置地址转换的情况 2. 开启路由转发&#xff0c;并设置SNAT转换的情况 1.2 SNAT策略的应用 1. 2.1 共享固定IP上网 &#xff08;1&#xff09;打开网关的路由转发 &#xff08;2&#xff09;…

MongoDB 概念介绍

1、MongoDB 应用场景 传统的关系型数据库&#xff0c;在数据操作的"三高"需求以及应对Web2.0的网站需求面前&#xff0c;显得力不从心。 High performance -对数据库高并发读写的需求。Huge Storage -对海量数据的高效率存储和访问的需求。High Scalability &&…