elasticsearch 笔记三:查询建议介绍、Suggester、自动完成

一、查询建议介绍

1. 查询建议是什么?

查询建议,为用户提供良好的使用体验。主要包括: 拼写检查; 自动建议查询词(自动补全)

拼写检查如图:

自动建议查询词(自动补全):

2. ES 中查询建议的 API

查询建议也是使用_search 端点地址。在 DSL 中 suggest 节点来定义需要的建议查询

示例 1:定义单个建议查询词

POST twitter/_search
{"query" : {"match": {"message": "tring out Elasticsearch"}},"suggest" : { <!-- 定义建议查询 -->"my-suggestion" : { <!-- 一个建议查询名 -->"text" : "tring out Elasticsearch", <!-- 查询文本 -->"term" : { <!-- 使用词项建议器 -->"field" : "message" <!-- 指定在哪个字段上获取建议词 -->}}}
}

示例 2:定义多个建议查询词

POST _search
{"suggest": {"my-suggest-1" : {"text" : "tring out Elasticsearch","term" : {"field" : "message"}},"my-suggest-2" : {"text" : "kmichy","term" : {"field" : "user"}}}
}

示例 3:多个建议查询可以使用全局的查询文本

POST _search
{"suggest": {"text" : "tring out Elasticsearch","my-suggest-1" : {"term" : {"field" : "message"}},"my-suggest-2" : {"term" : {"field" : "user"}}}
}

二、准备数据

准备一个叫做blogs的索引,配置一个text字段。

PUT /blogs/
{"mappings": {"properties": {"body": {"type": "text"}}}
}

通过bulk api写入几条文档

POST _bulk/?refresh=true
{"index":{"_index":"blogs"}}
{"body":"Lucene is cool"}
{"index":{"_index":"blogs"}}
{"body":"Elasticsearch builds on top of lucene"}
{"index":{"_index":"blogs"}}
{"body":"Elasticsearch rocks"}
{"index":{"_index":"blogs"}}
{"body":"Elastic is the company behind ELK stack"}
{"index":{"_index":"blogs"}}
{"body":"elk rocks"}
{"index":{"_index":"blogs"}}
{"body":"elasticsearch is rock solid"}

此时blogs索引里已经有一些文档了,可以进行下一步的探索。为帮助理解,我们先看看哪些term会存在于词典里。
将输入的文本分析一下:

POST _analyze
{"text": ["Lucene is cool","Elasticsearch builds on top of lucene","Elasticsearch rocks","Elastic is the company behind ELK stack","elk rocks","elasticsearch is rock solid"]
}

这些分出来的token都会成为词典里一个term,注意有些token会出现多次,因此在倒排索引里记录的词频会比较高,同时记录的还有这些token在原文档里的偏移量和相对位置信息。

三、Suggester 介绍

  • Term Suggester: 对给入的文本进行分词,为每个词进行模糊查询提供词项建议,并不会考虑多个term/词组之间的关系。。API调用方只需为每个token挑选options里的词,组合在一起返回给用户前端即可
  • Phrase Suggester,在Term Suggester的基础上,会考量多个term之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等等
  • Completion Suggester,FST数据结构,类似Trie树,不用打开倒排,快速返回,前缀匹配
  • Context Suggester,在Completion Suggester的基础上,用于filter和boost

1. Term suggester

term 词项建议器,对给入的文本进行分词,为每个词进行模糊查询提供词项建议。对于在索引中存在词默认不提供建议词,不存在的词则根据模糊查询结果进行排序后取一定数量的建议词。

常用的建议选项:

text搜索文本。建议文本是必填选项,需要全局或按建议设置。
field从中获取候选建议的字段。这是必需选项,需要全局设置或根据建议设置。
analyzer分析器用来分析建议文本。默认为建议字段的搜索分析器。
size每个建议文本将返回的最大数。
sort定义每个建议文本术语应如何分类建议。两个可能的值:score:首先按分数排序,然后记录频次,然后是词条本身。frequency:首先按文档频率排序,然后按相似性得分排序,然后再按术语本身排序。
suggest_mode提示模式控制要包含的建议,或控制建议的文本术语和建议的控件。可以指定三个可能的值:missing:仅对未在索引中的建议文本术语提供建议。这是默认值。popular:仅建议在比原始建议文本术语更多的文档中出现的建议。always:根据建议文本中的术语建议任何匹配的建议。
lowercase_terms在文本分析之后,将建议的文本术语小写。
max_edits最大编辑距离候选建议可以具有以便被认为是建议。只能是 1 到 2 之间的值。任何其他值都将导致引发错误的请求错误。默认为 2。
prefix_length必须匹配的最小前缀字符数才能成为建议的候选者。默认值为 1。增加此数字可提高拼写检查性能。通常,拼写错误不会出现在学期开始时。(旧名称 “prefix_len” 已弃用)

示例 1:

POST twitter/_search
{"suggest" : { <!-- 定义建议查询 -->"my-suggestion" : { <!-- 一个建议查询名 -->"text" : "lucne rock", <!-- 查询文本 -->"term" : { <!-- 使用词项建议器 -->"suggest_mode": "missing","field" : "body" <!-- 指定在哪个字段上获取建议词 -->}}}
}

返回结果

{"took" : 2,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 0,"relation" : "eq"},"max_score" : null,"hits" : [ ]},"suggest" : {"my-suggestion" : [{"text" : "lucne","offset" : 0,"length" : 5,"options" : [{"text" : "lucene","score" : 0.8,"freq" : 2}]},{"text" : "rock","offset" : 6,"length" : 4,"options" : [ ]}]}
}

在返回结果里"suggest" -> “my-suggestion"部分包含了一个数组,每个数组项对应从输入文本分解出来的token(存放在"text"这个key里)以及为该token提供的建议词项(存放在options数组里)。 示例里返回了"lucne”,"rock"这2个词的建议项(options),其中"rock"的options是空的,表示没有可以建议的选项,为什么? 上面提到了,我们为查询提供的suggest mode是"missing",由于"rock"在索引的词典里已经存在了,够精准,就不建议啦。 只有词典里找不到词,才会为其提供相似的选项。

如果将"suggest_mode"换成"popular"会是什么效果?

尝试一下,重新执行查询,返回结果里"rock"这个词的option不再是空的,而是建议为rocks。

  "suggest" : {"my-suggestion" : [{"text" : "lucne","offset" : 0,"length" : 5,"options" : [{"text" : "lucene","score" : 0.8,"freq" : 2}]},{"text" : "rock","offset" : 6,"length" : 4,"options" : [{"text" : "rocks","score" : 0.75,"freq" : 2}]}]}

回想一下,rock和rocks在索引词典里都是有的。 不难看出即使用户输入的token在索引的词典里已经有了,但是因为存在一个词频更高的相似项,这个相似项可能是更合适的,就被挑选到options里了。 最后还有一个"always" mode,其含义是不管token是否存在于索引词典里都要给出相似项。

Term suggester正如其名,只基于analyze过的单个term去提供建议,并不会考虑多个term之间的关系。API调用方只需为每个token挑选options里的词,组合在一起返回给用户前端即可。 那么有无更直接办法,API直接给出和用户输入文本相似的内容? 答案是有,这就要求助Phrase Suggester了。

2. phrase suggester

phrase 短语建议,在 term 的基础上,会考量多个 term 之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等

看个范例就比较容易明白了:

POST /blogs/_search
{"suggest": {"my-suggestion": {"text": "lucne and elasticsear rock","phrase": {"field": "body","highlight": {"pre_tag": "<em>","post_tag": "</em>"}}}}
}

返回结果:

 "suggest" : {"my-suggestion" : [{"text" : "lucne and elasticsear rock","offset" : 0,"length" : 26,"options" : [{"text" : "lucene and elasticsearch rock","highlighted" : "<em>lucene</em> and <em>elasticsearch</em> rock","score" : 0.004993905},{"text" : "lucne and elasticsearch rock","highlighted" : "lucne and <em>elasticsearch</em> rock","score" : 0.0033391973},{"text" : "lucene and elasticsear rock","highlighted" : "<em>lucene</em> and elasticsear rock","score" : 0.0029183894}]}]}

options直接返回一个phrase列表,由于加了highlight选项,被替换的term会被高亮。因为lucene和elasticsearch曾经在同一条原文里出现过,同时替换2个term的可信度更高,所以打分较高,排在第一位返回。Phrase suggester有相当多的参数用于控制匹配的模糊程度,需要根据实际应用情况去挑选和调试。

3. Completion suggester 自动补全

针对自动补全(“Auto Completion”)场景而设计的建议器。此场景下用户每输入一个字符的时候,就需要即时发送一次查询请求到后端查找匹配项,在用户输入速度较高的情况下对后端响应速度要求比较苛刻。因此实现上它和前面两个 Suggester 采用了不同的数据结构,索引并非通过倒排来完成,而是将 analyze 过的数据编码成 FST 和索引一起存放。对于一个 open 状态的索引,FST 会被 ES 整个装载到内存里的,进行前缀查找速度极快。 但是 FST 只能用于前缀查找,这也是 Completion Suggester 的局限所在。

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-completion.html

  • completion:es 的一种特有类型,专门为 suggest 提供,基于内存,性能很高。

  • prefix query:基于前缀查询的搜索提示,是最常用的一种搜索推荐查询。

    • prefix:客户端搜索词
    • field:建议词字段
    • size:需要返回的建议词数量(默认 5)
    • skip_duplicates:是否过滤掉重复建议,默认 false
  • fuzzy query

    • fuzziness:允许的偏移量,默认 auto
    • transpositions:如果设置为 true,则换位计为一次更改而不是两次更改,默认为 true。
    • min_length:返回模糊建议之前的最小输入长度,默认 3
    • prefix_length:输入的最小长度(不检查模糊替代项)默认为 1
    • unicode_aware:如果为 true,则所有度量(如模糊编辑距离,换位和长度)均以 Unicode 代码点而不是以字节为单位。这比原始字节略慢,因此默认情况下将其设置为 false。
  • regex query:可以用正则表示前缀,不建议使用

为了使用自动补全,索引中用来提供补全建议的字段需特殊设计,字段类型为 completion。

PUT /blogs_completion/
{"mappings": {"properties": {"body": {"type": "completion"}}}
}

用bulk API索引点数据:

POST _bulk/?refresh=true
{"index":{"_index":"blogs_completion"}}
{"body":"Lucene is cool"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elasticsearch builds on top of lucene"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elasticsearch rocks"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elastic is the company behind ELK stack"}
{"index":{"_index":"blogs_completion"}}
{"body":"the elk stack rocks"}
{"index":{"_index":"blogs_completion"}}
{"body":"elasticsearch is rock solid"}

查找:

POST blogs_completion/_search?pretty
{"size": 0,"suggest": {"blog-suggest": {"prefix": "elastic i","completion": {"field": "body"}}}
}

结果:

  "suggest" : {"blog-suggest" : [{"text" : "elastic i","offset" : 0,"length" : 9,"options" : [{"text" : "Elastic is the company behind ELK stack","_index" : "blogs_completion","_type" : "_doc","_id" : "8nI0YYwBPMQ17EXsspBh","_score" : 1.0,"_source" : {"body" : "Elastic is the company behind ELK stack"}}]}]}

值得注意的一点是Completion Suggester在索引原始数据的时候也要经过analyze阶段,取决于选用的analyzer不同,某些词可能会被转换,某些词可能被去除,这些会影响FST编码结果,也会影响查找匹配的效果。

比如我们删除上面的索引,重新设置索引的mapping,将analyzer更改为"english":

DELETE blogs_completion
PUT /blogs_completion/
{"mappings": {"properties": {"body": {"type": "completion","analyzer": "english"}}}
}

bulk api索引同样的数据后,执行下面的查询:

POST blogs_completion/_search?pretty
{"size": 0,"suggest": {"blog-suggest": {"prefix": "elastic i","completion": {"field": "body"}}}
}

居然没有匹配结果了,多么费解! 原来我们用的english analyzer会剥离掉stop word,而is就是其中一个,被剥离掉了!
用analyze api测试一下:

POST _analyze
{"analyzer": "english","text": "elasticsearch is rock solid"
}

会发现只有3个token:

{"tokens" : [{"token" : "elasticsearch","start_offset" : 0,"end_offset" : 13,"type" : "<ALPHANUM>","position" : 0},{"token" : "rock","start_offset" : 17,"end_offset" : 21,"type" : "<ALPHANUM>","position" : 2},{"token" : "solid","start_offset" : 22,"end_offset" : 27,"type" : "<ALPHANUM>","position" : 3}]
}

FST只编码了这3个token,并且默认的还会记录他们在文档中的位置和分隔符。 用户输入"elastic i"进行查找的时候,输入被分解成"elastic"和"i",FST没有编码这个“i” , 匹配失败。

好吧,如果你现在还足够清醒的话,试一下搜索"elastic is",会发现又有结果,why? 因为这次输入的text经过english analyzer的时候is也被剥离了,只需在FST里查询"elastic"这个前缀,自然就可以匹配到了。

其他能影响completion suggester结果的,还有诸如"preserve_separators","preserve_position_increments"等等mapping参数来控制匹配的模糊程度。以及搜索时可以选用Fuzzy Queries,使得上面例子里的"elastic i"在使用english analyzer的情况下依然可以匹配到结果。

因此用好Completion Sugester并不是一件容易的事,实际应用开发过程中,需要根据数据特性和业务需要,灵活搭配analyzer和mapping参数,反复调试才可能获得理想的补全效果。

回到篇首百度搜索框的补全/纠错功能,如果用ES怎么实现呢?我能想到的一个的实现方式:

  1. 在用户刚开始输入的过程中,使用Completion Suggester进行关键词前缀匹配,刚开始匹配项会比较多,随着用户输入字符增多,匹配项越来越少。如果用户输入比较精准,可能Completion Suggester的结果已经够好,用户已经可以看到理想的备选项了。
  2. 如果Completion Suggester已经到了零匹配,那么可以猜测是否用户有输入错误,这时候可以尝试一下Phrase Suggester。
  3. 如果Phrase Suggester没有找到任何option,开始尝试term Suggester。

精准程度上(Precision)看: Completion > Phrase > term, 而召回率上(Recall)则反之。从性能上看,Completion Suggester是最快的,如果能满足业务需求,只用Completion Suggester做前缀匹配是最理想的。 Phrase和Term由于是做倒排索引的搜索,相比较而言性能应该要低不少,应尽量控制suggester用到的索引的数据量,最理想的状况是经过一定时间预热后,索引可以全量map到内存。

4. context suggester

完成建议者会考虑索引中的所有文档,但是通常来说,我们在进行智能推荐的时候最好通过某些条件过滤,并且有可能会针对某些特性提升权重。

  • contexts:上下文对象,可以定义多个

    • name:context的名字,用于区分同一个索引中不同的context对象。需要在查询的时候指定当前name

    • type:context对象的类型,目前支持两种:category和geo,分别用于对suggest item分类和指定地理位置。

    • boost:权重值,用于提升排名

  • path:如果没有path,相当于在PUT数据的时候需要指定context.name字段,如果在Mapping中指定了path,在PUT数据的时候就不需要了,因为 Mapping是一次性的,而PUT数据是频繁操作,这样就简化了代码。这段解释有木有很牛逼,网上搜到的都是官方文档的翻译,觉悟雷同。

# context suggester
# 定义一个名为 place_type 的类别上下文,其中类别必须与建议一起发送。
# 定义一个名为 location 的地理上下文,类别必须与建议一起发送
DELETE place
PUT place
{"mappings": {"properties": {"suggest": {"type": "completion","contexts": [{"name": "place_type","type": "category"},{"name": "location","type": "geo","precision": 4}]}}}
}PUT place/_doc/1
{"suggest": {"input": [ "timmy's", "starbucks", "dunkin donuts" ],"contexts": {"place_type": [ "cafe", "food" ]                    }}
}
PUT place/_doc/2
{"suggest": {"input": [ "monkey", "timmy's", "Lamborghini" ],"contexts": {"place_type": [ "money"]                    }}
}GET place/_search
POST place/_search?pretty
{"suggest": {"place_suggestion": {"prefix": "sta","completion": {"field": "suggest","size": 10,"contexts": {"place_type": [ "cafe", "restaurants" ]}}}}
}
# 某些类别的建议可以比其他类别提升得更高。以下按类别过滤建议,并额外提升与某些类别相关的建议
GET place/_search
POST place/_search?pretty
{"suggest": {"place_suggestion": {"prefix": "tim","completion": {"field": "suggest","contexts": {"place_type": [                             { "context": "cafe" },{ "context": "money", "boost": 2 }]}}}}
}# 地理位置筛选器
PUT place/_doc/3
{"suggest": {"input": "timmy's","contexts": {"location": [{"lat": 43.6624803,"lon": -79.3863353},{"lat": 43.6624718,"lon": -79.3873227}]}}
}
POST place/_search
{"suggest": {"place_suggestion": {"prefix": "tim","completion": {"field": "suggest","contexts": {"location": {"lat": 43.662,"lon": -79.380}}}}}
}# 定义一个名为 place_type 的类别上下文,其中类别是从 cat 字段中读取的。
# 定义一个名为 location 的地理上下文,其中的类别是从 loc 字段中读取的
DELETE place_path_category
PUT place_path_category
{"mappings": {"properties": {"suggest": {"type": "completion","contexts": [{"name": "place_type","type": "category","path": "cat"},{"name": "location","type": "geo","precision": 4,"path": "loc"}]},"loc": {"type": "geo_point"}}}
}
# 如果映射有路径,那么以下索引请求就足以添加类别
# 这些建议将与咖啡馆和食品类别相关联
# 如果上下文映射引用另一个字段并且类别被明确索引,则建议将使用两组类别进行索引
PUT place_path_category/_doc/1
{"suggest": ["timmy's", "starbucks", "dunkin donuts"],"cat": ["cafe", "food"] 
}
POST place_path_category/_search?pretty
{"suggest": {"place_suggestion": {"prefix": "tim","completion": {"field": "suggest","contexts": {"place_type": [                             { "context": "cafe" }]}}}}
}

参考

官网

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585321.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rust之构建命令行程序(二):读取文件

开发环境 Windows 10Rust 1.74.1 VS Code 1.85.1 项目工程 这次创建了新的工程minigrep. 读取文件 现在&#xff0c;我们将添加读取file_path参数中指定的文件的功能。首先&#xff0c;我们需要一个样本文件来测试它:我们将使用一个包含少量文本的文件&#xff0c;多行包含一…

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解 文章目录 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解前言ShuffleNet_V2讲解四条实用指导思想G1:相等的通道宽度可以降低存储访问成本G2:大量的分组卷积…

【Shell编程练习】监控内存和磁盘容量,小于给定值时报警

系列文章目录 输出Hello World 通过位置变量创建 Linux 系统账户及密码 系列文章目录分析代码实现运行结果 分析 对于磁盘容量&#xff0c;可以使用df命令查看指定指定分区的磁盘使用情况。比如 然后我们需要从这段输出中提取我们想要的信息。在这里就是Available字段的值。…

【wargames】bandit0~9关wp

第1关直接ssh连接&#xff0c;获得密码NH2SXQwcBdpmTEzi3bvBHMM9H66vVXjL&#xff0c;用这个密码连接第2关 第2关&#xff0c;连接之后查看 存在特殊字符的文件 因为使用 - 作为参数是指 STDIN/STDOUT 即 dev/stdin 或 dev/stdout 。所以如果你想打开这种类型的文件&#xff0…

数据结构--二叉搜索树的实现

目录 1.二叉搜索树的概念 2.二叉搜索树的操作 二叉搜索树的插入 中序遍历(常用于排序) 二叉搜索树的查找 二叉搜索树的删除 完整二叉树代码&#xff1a; 二叉搜索树的应用 key/value搜索模型整体代码 1.二叉搜索树的概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一…

基于JAVA的考研专业课程管理系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 考研高校模块2.3 高校教师管理模块2.4 考研专业模块2.5 考研政策模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 考研高校表3.2.2 高校教师表3.2.3 考研专业表3.2.4 考研政策表 四、系统展示五、核…

SAP CO系统配置-获利能力分析-(机器人制造项目实例)

创建经营组织 配置路径 IMG菜单路径:企业结构>定义>控制>创建经营组织 事务代码 KEP8 屏幕截图: 维护特性 配置路径

nodejs+vue+ElementUi农产品团购销售系统zto2c

目标是为了完成小区团购平台的设计和实现&#xff0c;在疫情当下的环境&#xff0c;方便小区业主购入生活所需&#xff0c;减小居民的生活压力 采用B/S模式架构系统&#xff0c;开发简单&#xff0c;只需要连接网络即可登录本系统&#xff0c;不需要安装任何客户端。开发工具采…

Python/R/GUI/BI类型常用数据可视化工具

什么是数据可视化工具&#xff1f; 数据可视化工具是指旨在可视化数据的所有形式的软件。它们处理数据输入&#xff0c;将其转换为用户可以根据自己的需求进行定制的视觉效果。 不同的工具可以包含不同的功能&#xff0c;但最基本的是&#xff0c;数据可视化工具提供输入数据集…

CDN:内容分发的高速公路(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

蓝牙曝底层安全漏洞,数十亿设备受影响

内容概括&#xff1a; Eurecom的研究人员近期分享了六种新型攻击方式&#xff0c;统称为"BLUFFS"&#xff0c;这些攻击方式能够破坏蓝牙会话的保密性&#xff0c;使设备容易受到冒充和中间人攻击(MitM)。攻击发现者Daniele Antonioli解释道&#xff0c;"BLUFFS…

flask之文件管理系统-项目 JRP上线啦!!! ---修订版,兼容Windows和Linux系统

上一章的版本https://blog.csdn.net/weixin_44517278/article/details/135275066&#xff0c;在Windows下debug完成无异常后&#xff0c;上传到我的树莓下开始正式服役 由于开发环境是Windows&#xff0c;使用环境是Linux&#xff0c;导致最后没能成功运行起来 这个版本是今天去…

Python If语句以及代码块的基本介绍

if语句 在编程中if语句是一种根据条件执行不同代码块的控制结构,他根据条件的真假来分支程序的执行路径,所以我们可以通过if语句根据不同情况而执行不同的程序 格式 if [条件(bool值或者计算结果为bool类型的算式)] : a11if a>10:print("a大于10") # --> a大…

欧洲十大跨境电商平台,自养号测评下单的重要性及优势

在欧洲站&#xff0c;用户体量非常庞大&#xff0c;这与近几年人们的消费习惯密不可分&#xff0c;越来越多的人开始网购&#xff0c;据欧盟委员的最新调研显示&#xff0c;在欧盟&#xff0c;近一半(42%)的中小企业通过在线市场销售产品和服务。 所以&#xff0c;逸居海外给大…

re:Invent 2023技术上新|Amazon DynamoDB与OpenSearch Service的Zero-ETL集成

Amazon DynamoDB 与 Amazon OpenSearch Service 的 Zero-ETL 集成已正式上线&#xff0c;该服务允许您通过自动复制和转换您的 DynamoDB 数据来搜索数据&#xff0c;而无需自定义代码或基础设施。这种 Zero-ETL 集成减少了运营负担和成本&#xff0c;使您能够专注于应用程序。这…

js for和forEach 跳出循环 替代方案

1 for循环跳出 for(let i0;i<10;i){if(i5){break;}console.log(i) }在函数中也可以return跳出循环 function fn(){for(let i0;i<10;i){if(i5){return;}console.log(i)} } fn()for ... of效果同上 2 forEach循环跳出 break会报错 [1,2,3,4,5,6,7,8,9,10].forEach(i>…

相机删除视频恢复后损坏打不开修复方法

同事对热恋5年的女朋友精心准备了一场浪漫求婚仪式&#xff0c;让朋友帮忙用单反相机拍摄记录这一美好时刻。不巧的的是朋友清理相机空间时&#xff0c;不小心把这一视频删除了&#xff0c;找人帮忙把视频恢复了&#xff0c;却无奈发现恢复出来的视频播放不了&#xff0c;真是好…

【23.12.29期--Redis缓存篇】谈一谈Redis的集群模式

谈一谈Redis的集群模式 ✔️ 谈一谈Redis的集群模式✔️主从模式✔️ 特点✔️Redis主从模式Demo ✔️哨兵模式✔️Redis哨兵模式Demo✔️特点 ✔️Cluster模式✔️Redis Cluster模式Demo✔️特点 ✔️ 谈一谈Redis的集群模式 Redis有三种主要的集群模式&#xff0c;用于在分布…

Linux安装常用的软件(jdk,MySQL,nginx)并完成对前后端项目的部署发布

linux软件安装&#xff1a; 安装方式介绍&#xff1a; 二进制发布包安装&#xff1a; 软件已经针对具体平台编译打包发布&#xff0c;只要解压&#xff0c;修改配置即可 rpm安装&#xff1a; 软件已经按照redhat的包管理规范进行打包&#xff0c;使用rpm命令进行安装&#xff0…

简单了解SQL宽字节注入与httpXFF头注入(基于sqllabs演示)

1、宽字节注入 sqllabs-less-32为例 使用单引号进行测试 提示我们输入的单引号被转义符 \ 进行了转义&#xff0c;即转义符自动的出现在输入的特殊字符前面&#xff0c;这是防止sql注入的一种方法&#xff0c;导致无法产生报错。 这种情况我们就可以尝试宽字节注入&#xff…