数据结构--二叉搜索树的实现

目录

1.二叉搜索树的概念

2.二叉搜索树的操作

二叉搜索树的插入

中序遍历(常用于排序)

二叉搜索树的查找

二叉搜索树的删除

完整二叉树代码:

二叉搜索树的应用

key/value搜索模型整体代码


1.二叉搜索树的概念

二叉搜索树又称二叉排序树,它或者是一棵空树 ,或者是具有以下性质的二叉树 :
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别 为二叉搜索树
注:搜索二叉树中没有重复值
二叉搜索树与其结点的代码实现
#include<iostream>
using namespace std;template<class K>//搜索二叉树的结点
struct BSTreeNode
{K _key;BSTreeNode<K>* _left;BSTreeNode<K>* _right;BSTreeNode(const K& s = K()):_key(s), _left(nullptr), _right(nullptr){}
};template<class K>//搜索二叉树
class BSTree
{
public:BSTree():_root(nullptr){}//...各种操作二叉搜索树方法的实现//...
private:typedef BSTreeNode<K> Node;Node* _root;
};

2.二叉搜索树的操作

二叉搜索树的插入

这里根据二叉搜索树的概念分两种情况:

a. 树为空,则直接新增节点,赋值给 root 指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

非递归

bool Insert(const K & key){if (_root == nullptr)//情况a{_root = new Node(key);}else//情况b{Node* parent = nullptr;//记录当前节点的父结点Node* cur = _root;while (cur){if (cur->_key > key)//小于当前节点的值,向左走{parent = cur;cur = cur->_left;}else if (cur->_key < key)//大于当前结点的值,向右走{parent = cur;cur = cur->_right;}else  //数字重复插入失败{return false;}}cur = new Node(key);if (parent->_key > key)//判断插入结点是在parent的左子树还是右子树{parent->_left = cur;}else{parent->_right = cur;}return true;}}

为什么要定义parent变量记录cur的父节点?

这里我们要知道,cur=new Node(key)这行代码的真正意义是给cur赋值,并没有把结点插入到树中。

注:在向二叉搜索树插入时,一定要判断是在父节点的左子树还是右子树。

递归:

public: 
bool InsertR(const K& key)
{return _insertR(_root, key);
}private:
bool _insertR(Node*& root, const K& key)
{if (root == nullptr){root = new Node(key);return true;}else{if (root->_key > key){return _insertR(root->_left, key);}else if (root->_key < key){return _insertR(root->_right, key);}else{return false;}}
}

注:由于使用递归时,需要用到成员变量_root作为实参,但是在类外面无法直接调用,因此,将递归调用的函数封装到了InsertR()里面。

为什么这里不用记录父节点,就可以插入到树中。

这里我们要注意函数的第一个变量,我们使用了引用!

这里的root就是父节点的左孩子或有孩子。

那么在非递归里面可以使用引用来达到不设置parent变量来记录父节点吗?
不能,因为在C++里引用只能指向一个。之后就不能改变指向。在递归中,我们是在传参是使用的,每次引用都重新开辟了一个新的变量,而非递归中我们一直用的是一个变量。

中序遍历(常用于排序)

public:
void Inorder()
{_Inorder(_root);
}private:
void _Inorder(Node* root)
{if (root == nullptr)return;_Inorder(root->_left);cout << root->_key << "  ";_Inorder(root->_right);
}

这里根据二叉搜索树的概念我们清楚,其中序遍历相当于将树里面的数据按从小到大排序输出。

二叉搜索树的查找

查找方法:

a 、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b 、最多查找高度次,走到到空,还没找到,这个值不存在。

注意:

为完全二叉树时间复杂度最好,为O(log n)   

树的结点全部为左孩子或右孩子时,时间复杂度最坏,为O(n)

非递归

bool Find(const K& key)
{if (_root == nullptr)//树为空return false;Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->left;// _key>key.左走}else if (cur->_key < key){cur = cur->_right;//_key<key.右走}else{return true;//相等,找到}}return false;//没有一个相等
}

递归:

public:
Node* FindR(const K& key)
{return _FindR(_root, key);
}private:
Node* _FindR(Node* root, const K& key)
{if (root == nullptr)return nullptr;if (root->_key > key){_FindR(root->_left, key);}else if (root->_key < key){_FindR(root->_right, key);}else{return root;}
}

二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回 , 否则要删除的结点可能分下面四种情
况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
看起来有待删除节点有 4 中情况,实际情况 a 可以与情况 b 或者 c 合并起来,因此真正的删除过程
如下:
情况 b :删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点 -- 直接删除
情况 c :删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点 -- 直接删除
情况 d :在它的右子树中寻找中序下的第一个结点 ( 关键码最小 ) ,用它的值填补到被删除节点
中,再来处理该结点的删除问题 -- 替换法删除
bool Erase(const K& key)
{if (_root == nullptr)return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = nullptr;cur = cur->_right;}else{if (cur->_left == nullptr)//情况a{if (cur == _root)//特殊条件,等于根节点{_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->right == nullptr)//情况b{if (cur == _root) //特殊条件,等于根节点{_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else            //情况c{Node* parent = cur;Node* subnode = cur->_right;while (subnode->_left){parent = subnode;subnode = subnode->_left;}swap(cur->_key, subnode->_key);if (parent->_right == subnode)   //当cur->_right->left==nullptr{parent->_right = subnode->_right;}else{parent->_left = subnode->_right;}delete subnode;}return true;}}return false;
}

递归:

public:bool EraseR(const K& key)
{_EraseR(_root,key);
}private:bool _EraseR(Node*& root, const K& key)
{if (root == nullptr){return false;}if (root->_key > key){return _EraseR(root->_left, key);}else if (root->_key < key){return _EraseR(root->_right, key);}else{if (root->_left == nullptr){Node* temp = root;root = root->_right;delete temp;}else if (root->right){Node* temp = root;root = root->_left;delete temp;}else{Node* subnode = root->_right;while (subnode->left){subnode = subnode->_left;}swap(root->_key, subnode->_key);return _EraseR(root - right, key);}}
}

完整二叉树代码:

#include<iostream>
using namespace std;template<class K>//搜索二叉树的结点
struct BSTreeNode
{K _key;BSTreeNode<K>* _left;BSTreeNode<K>* _right;BSTreeNode(const K& s = K()):_key(s), _left(nullptr), _right(nullptr){}
};template<class K>//搜索二叉树
class BSTree
{
public:BSTree():_root(nullptr){}bool Insert(const K & key){if (_root == nullptr)//情况a{_root = new Node(key);}else//情况b{Node* parent = nullptr;//记录当前节点的父结点Node* cur = _root;while (cur){if (cur->_key > key)//小于当前节点的值,向左走{parent = cur;cur = cur->_left;}else if (cur->_key < key)//大于当前结点的值,向右走{parent = cur;cur = cur->_right;}else  //数字重复插入失败{return false;}}cur = new Node(key);if (parent->_key > key)//判断插入结点是在parent的左子树还是右子树{parent->_left = cur;}else{parent->_right = cur;}return true;}}bool Find(const K& key){if (_root == nullptr)//树为空return false;Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->left;// _key>key.左走}else if (cur->_key < key){cur = cur->_right;//_key<key.右走}else{return true;//相等,找到}}return false;//没有一个相等}Node* FindR(const K& key){return _FindR(_root, key);}void Inorder(){_Inorder(_root);}bool InsertR(const K& key){return _insertR(_root, key);cout << endl;}bool Erase(const K& key){if (_root == nullptr)return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if(cur->_key<key){parent = nullptr;cur = cur->_right;}else{if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if(cur->right==nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{Node* parent = cur;Node* subnode = cur->_right;while (subnode->_left){parent = subnode;subnode = subnode->_left;}swap(cur->_key, subnode->_key);if (parent->_right == subnode){parent->_right = subnode->_right;}else{parent->_left = subnode->_right;}delete subnode;}return true;}}return false;}bool EraseR(const K& key){return _EraseR(_root, key);}private:typedef BSTreeNode<K> Node;Node* _root;bool _insertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}else{if (root->_key > key){return _insertR(root->_left, key);}else if (root->_key < key){return _insertR(root->_right, key);}else{return false;}}}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_key<<"  ";_Inorder(root->_right);}Node*_FindR(Node* root, const K& key){if (root == nullptr)return nullptr;if (root->_key > key){_FindR(root->_left, key);}else if (root->_key < key){_FindR(root->_right, key);}else{return root;}}bool _EraseR(Node*& root, const K& key){if (root == nullptr){return false;}if (root->_key > key){return _EraseR(root->_left, key);}else if (root->_key < key){return _EraseR(root->_right, key);}else{if (root->_left == nullptr){Node* temp = root;root = root->_right;delete temp;}else if (root->right){Node* temp = root;root = root->_left;delete temp;}else{Node* subnode = root->_right;while (subnode->left){subnode = subnode->_left;}swap(root->_key, subnode->_key);return _EraseR(root - right, key);}}}
};
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

二叉搜索树的应用

1. K 模型: K 模型即只有 key 作为关键码,结构中只需要存储 Key 即可,关键码即为需要搜索到
的值
比如: 给一个单词 word ,判断该单词是否拼写正确 ,具体方式如下:
以词库中所有单词集合中的每个单词作为 key ,构建一棵二叉搜索树
在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2. KV 模型:每一个关键码 key ,都有与之对应的值 Value ,即 <Key, Value> 的键值对 。该方式在现实生活中非常常见:
比如 英汉词典就是英文与中文的对应关系 ,通过英文可以快速找到与其对应的中文,英
文单词与其对应的中文 <word, chinese> 就构成一种键值对;
再比如 统计单词次数 ,统计成功后,给定单词就可快速找到其出现的次数, 单词与其出
现次数就是 <word, count> 就构成一种键值对

key/value搜索模型整体代码

#pragma once
// 改造二叉搜索树为KV结构
template<class K, class V>
struct BSTNode
{BSTNode(const K& key = K(), const V& value = V()): _pLeft(nullptr), _pRight(nullptr), _key(key), _Value(value){}BSTNode<T>* _pLeft;BSTNode<T>* _pRight;K _key;V _value
};template<class K, class V>
class BSTree
{typedef BSTNode<K, V> Node;
public:bool Insert(const K& key,const V& value){if (_root == nullptr)//情况a{_root = new Node(key,value);}else//情况b{Node* parent = nullptr;//记录当前节点的父结点Node* cur = _root;while (cur){if (cur->_key > key)//小于当前节点的值,向左走{parent = cur;cur = cur->_left;}else if (cur->_key < key)//大于当前结点的值,向右走{parent = cur;cur = cur->_right;}else  //数字重复插入失败{return false;}}cur = new Node(key,value);if (parent->_key > key)//判断插入结点是在parent的左子树还是右子树{parent->_left = cur;}else{parent->_right = cur;}return true;}}bool Find(const K& key){if (_root == nullptr)//树为空return false;Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->left;// _key>key.左走}else if (cur->_key < key){cur = cur->_right;//_key<key.右走}else{return true;//相等,找到}}return false;//没有一个相等}bool Erase(const K& key){if (_root == nullptr)return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = nullptr;cur = cur->_right;}else{if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{Node* parent = cur;Node* subnode = cur->_right;while (subnode->_left){parent = subnode;subnode = subnode->_left;}swap(cur->_key, subnode->_key);if (parent->_right == subnode){parent->_right = subnode->_right;}else{parent->_left = subnode->_right;}delete subnode;}return true;}}return false;}void Inorder(){_Inorder(_root);}private:Node* _root;void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_key << ":"<<root->_value<<endl;_Inorder(root->_right);}
};
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585312.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JAVA的考研专业课程管理系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 考研高校模块2.3 高校教师管理模块2.4 考研专业模块2.5 考研政策模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 考研高校表3.2.2 高校教师表3.2.3 考研专业表3.2.4 考研政策表 四、系统展示五、核…

SAP CO系统配置-获利能力分析-(机器人制造项目实例)

创建经营组织 配置路径 IMG菜单路径:企业结构>定义>控制>创建经营组织 事务代码 KEP8 屏幕截图: 维护特性 配置路径

nodejs+vue+ElementUi农产品团购销售系统zto2c

目标是为了完成小区团购平台的设计和实现&#xff0c;在疫情当下的环境&#xff0c;方便小区业主购入生活所需&#xff0c;减小居民的生活压力 采用B/S模式架构系统&#xff0c;开发简单&#xff0c;只需要连接网络即可登录本系统&#xff0c;不需要安装任何客户端。开发工具采…

Python/R/GUI/BI类型常用数据可视化工具

什么是数据可视化工具&#xff1f; 数据可视化工具是指旨在可视化数据的所有形式的软件。它们处理数据输入&#xff0c;将其转换为用户可以根据自己的需求进行定制的视觉效果。 不同的工具可以包含不同的功能&#xff0c;但最基本的是&#xff0c;数据可视化工具提供输入数据集…

CDN:内容分发的高速公路(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

蓝牙曝底层安全漏洞,数十亿设备受影响

内容概括&#xff1a; Eurecom的研究人员近期分享了六种新型攻击方式&#xff0c;统称为"BLUFFS"&#xff0c;这些攻击方式能够破坏蓝牙会话的保密性&#xff0c;使设备容易受到冒充和中间人攻击(MitM)。攻击发现者Daniele Antonioli解释道&#xff0c;"BLUFFS…

flask之文件管理系统-项目 JRP上线啦!!! ---修订版,兼容Windows和Linux系统

上一章的版本https://blog.csdn.net/weixin_44517278/article/details/135275066&#xff0c;在Windows下debug完成无异常后&#xff0c;上传到我的树莓下开始正式服役 由于开发环境是Windows&#xff0c;使用环境是Linux&#xff0c;导致最后没能成功运行起来 这个版本是今天去…

Python If语句以及代码块的基本介绍

if语句 在编程中if语句是一种根据条件执行不同代码块的控制结构,他根据条件的真假来分支程序的执行路径,所以我们可以通过if语句根据不同情况而执行不同的程序 格式 if [条件(bool值或者计算结果为bool类型的算式)] : a11if a>10:print("a大于10") # --> a大…

欧洲十大跨境电商平台,自养号测评下单的重要性及优势

在欧洲站&#xff0c;用户体量非常庞大&#xff0c;这与近几年人们的消费习惯密不可分&#xff0c;越来越多的人开始网购&#xff0c;据欧盟委员的最新调研显示&#xff0c;在欧盟&#xff0c;近一半(42%)的中小企业通过在线市场销售产品和服务。 所以&#xff0c;逸居海外给大…

re:Invent 2023技术上新|Amazon DynamoDB与OpenSearch Service的Zero-ETL集成

Amazon DynamoDB 与 Amazon OpenSearch Service 的 Zero-ETL 集成已正式上线&#xff0c;该服务允许您通过自动复制和转换您的 DynamoDB 数据来搜索数据&#xff0c;而无需自定义代码或基础设施。这种 Zero-ETL 集成减少了运营负担和成本&#xff0c;使您能够专注于应用程序。这…

js for和forEach 跳出循环 替代方案

1 for循环跳出 for(let i0;i<10;i){if(i5){break;}console.log(i) }在函数中也可以return跳出循环 function fn(){for(let i0;i<10;i){if(i5){return;}console.log(i)} } fn()for ... of效果同上 2 forEach循环跳出 break会报错 [1,2,3,4,5,6,7,8,9,10].forEach(i>…

相机删除视频恢复后损坏打不开修复方法

同事对热恋5年的女朋友精心准备了一场浪漫求婚仪式&#xff0c;让朋友帮忙用单反相机拍摄记录这一美好时刻。不巧的的是朋友清理相机空间时&#xff0c;不小心把这一视频删除了&#xff0c;找人帮忙把视频恢复了&#xff0c;却无奈发现恢复出来的视频播放不了&#xff0c;真是好…

【23.12.29期--Redis缓存篇】谈一谈Redis的集群模式

谈一谈Redis的集群模式 ✔️ 谈一谈Redis的集群模式✔️主从模式✔️ 特点✔️Redis主从模式Demo ✔️哨兵模式✔️Redis哨兵模式Demo✔️特点 ✔️Cluster模式✔️Redis Cluster模式Demo✔️特点 ✔️ 谈一谈Redis的集群模式 Redis有三种主要的集群模式&#xff0c;用于在分布…

Linux安装常用的软件(jdk,MySQL,nginx)并完成对前后端项目的部署发布

linux软件安装&#xff1a; 安装方式介绍&#xff1a; 二进制发布包安装&#xff1a; 软件已经针对具体平台编译打包发布&#xff0c;只要解压&#xff0c;修改配置即可 rpm安装&#xff1a; 软件已经按照redhat的包管理规范进行打包&#xff0c;使用rpm命令进行安装&#xff0…

简单了解SQL宽字节注入与httpXFF头注入(基于sqllabs演示)

1、宽字节注入 sqllabs-less-32为例 使用单引号进行测试 提示我们输入的单引号被转义符 \ 进行了转义&#xff0c;即转义符自动的出现在输入的特殊字符前面&#xff0c;这是防止sql注入的一种方法&#xff0c;导致无法产生报错。 这种情况我们就可以尝试宽字节注入&#xff…

Android NDK打包armeabi平台架包

NDK打包armeabi 1.降低NDK版本和Cmake版本 sdk.dirE\:\\Android\\sdk //指定ndk版本&#xff0c;不指定默认使用最新的NDK ndk.dirE\:\\Android\\sdk\\ndk\\16.1.4479499修改builde.gradle(app) android{defaultConfig{...//配置 AS 工程的 C/C 源文件编译参数externalNativ…

市场复盘总结 20231229

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整 昨日回顾: -- 今日 SELECT * FROM (SELECT TOP 100 CODE,20231229 入选日期,成交额排名,净流入排名,代码,名称,DDE大单金额,涨幅,主力净额,DDE大单净量,CONVERT(DATETIM…

工厂方法?按图索骥!

前言 还记得在第3节的简单工厂模式&#xff0c;我们实现了一个简易计算器。简单工厂模式的最大优点在于工厂类中包含了必要的逻辑判断&#xff0c;根据客户端的选择条件动态实例化相关类&#xff0c;去除了与具体运算类的依赖。 但其问题也就在这里&#xff0c;如果要加一个‘…

SparkCore

一、RDD详解 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。 Dataset:一个数据集合,用于存放数据的。Distributed:RDD中的数据是分布式存储的,可用于分布式…

vue连接本地服务器

vue 连接本地服务器做后端。 后端服务 使用springboot新建一个基于restful的接口&#xff0c;访问如下的地址&#xff0c;返回值。 vue构建 新建一个vue项目&#xff0c;安装访问服务器的插件。 npm install axios vue-axios --save 修改main.js使用axios&#xff0c;最终…